Abstract: A thermosetting polyamide foam prepared by reacting a polyisocyanate compound with a polyester polycarboxylic acid using a compound having a P?N bond as a catalyst under conditions of an NCO index of not less than 1.6. The polyamide foam is excellent in heat resistance (thermal decomposition resistance) and moldability, and is applicable for heat-resistant vibration dampers, heat-resistant sound-absorbing materials and heat-resistant cushioning materials.
Abstract: A coated copper is provided which inhibits the growth of whiskers and is composed of a copper substrate or a copper alloy substrate, a copper-diffused tin layer formed on the surface of the substrate, and a pure tin layer formed on the surface of the copper-diffused tin layer. The thickness of the copper-diffused tin layer is 55% or more with respect to the total thickness of the copper-diffused tin layer and the pure tin layer. Further, a printed wiring board is provided having a wiring pattern of the copper substrate or the copper alloy substrate, and a semiconductor device. Accordingly, the generation of long whiskers having a length exceeding 15 ?m which cause short circuits can be inhibited.
Abstract: A phosphazene-supported catalyst in which a support is bonded to a group represented by the general formula (1): wherein n, Zn?, a, b, c, d, R, R1 and D are all defined. The phosphazene-supported catalyst is highly effective to catalyze various organic reactions, and further has no reduction of activity even after recovery and reuse of the catalyst, thus it being economically advantageous. In addition, the polymerization of cyclic monomers, substitution of substituents, carbon-carbon bond forming reactions and the like can be conducted with extremely high efficiency.
Abstract: The present invention has an object to provide a method for forming an oxide dielectric layer, which dielectric layer is formed by applying the sol-gel method, and is hardly damaged by an etching solution and excellent in dielectric characteristics such as a large electric capacitance. To achieve the object, the forming method of an oxide dielectric layer by applying a sol-gel method characterized by being provided with the following processes (a) to (c) is employed. Process (a): A solution preparing process of preparing a sol-gel solution for manufacturing an aiming oxide dielectric layer. Process (b): A coating process wherein stages of the sol-gel solution coating on the surface of a metal substrate followed by drying in an oxygen-containing atmosphere followed by pyrolysis in an oxygen-containing atmosphere sequentially is made one unit step; the one unit step is repeated twice or more times; and a pre-baking stage at 550-deg.C to 1000-deg.
Abstract: The present invention is to provide a composition for preventing plant diseases which comprises at least Component I and Component II, is capable of obtaining a synergic effect that cannot be expected with each single component, is capable of markedly increasing a control effect in a much smaller amount of chemicals against various plant pathogens, and causes no phytotoxicity suffering. A composition for preventing plant diseases comprises Components I and II as active ingredients. The Component I is (RS)—N—[2-(1,3-dimethylbutyl)thiophen-3-yl]-1-methyl-3-tri fluoromethyl-1H-pyrazole-4-carboxamide.
Abstract: In a metal-winning method, copper ore or copper-ore concentrates is effectively hydraulically leached in a chloride leach liquor and the resultant leached liquor is diaphragm-electrolyzed. A chloride electrolyte containing Br? ions and the leached metals is subjected to a diaphragm-electrolysis in an electrolytic cell comprising an anode compartment (4) and a cathode compartment (3). A portion of the electrolyte in the anode compartment (4) is withdrawn from below an anode (2) of the anode compartment (4) and is returned to the leaching step so as to increase the oxidation potential of the chloride leach liquor.
Abstract: The process for producing an olefin polymer according to the present invention is characterized in that it comprises polymerizing an olefin having 3 or more carbon atoms in the presence of a catalyst for olefin polymerization containing a solid titanium catalyst component (I) which contains titanium, magnesium, halogen, and a cyclic ester compound (a) specified by the following formula (1): wherein n is an integer of 5 to 10, R2 and R3 are each independently COOR1 or a hydrogen atom, and at least one of R2 and R3 is COOR1; and R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is a hydrogen atom) in the cyclic backbone may be replaced with a double bond, and an organometallic compound catalyst component (II), at an internal pressure of the polymerization vessel which is 0.25 times or more as high as the saturation vapor pressure of the olefin at a polymerization temperature.
Abstract: The present invention relates to a polyimide-metal laminate that ensures a high adhesion of a metal layer and suitable for use as a material of a high density circuit board. In particular, it provides a polyimide film characterized by having undergone a surface treatment with an alkaline aqueous solution containing a permanganate. The alkaline aqueous solution preferably contains a hydroxide. It also provides a polyimide-metal laminate characterized in that on a surface of the polyimide film a thermoplastic polyimide layer and a metal layer are formed, and a method of producing the polyimide-metal laminate.
Abstract: One actuator selectively operates a latch lever linked to a latch and a ratchet lever, a push rod, a bell crank and a pull rod linked to a ratchet. When the front door and the rear door of a car having the center pillarless design are closed, the actuator operates the latch lever causing the latch to engage with a striker to connect the front door and the rear door. When the front door and the rear door are connected and a passenger opens either of the two doors, the actuator operates the ratchet lever, the push rod, the bell crank, and the pull rod causing the latch and the striker to be disengaged to disconnect the front door and the rear door.
Abstract: This invention relates to DNA encoding a novel enzyme having activity of synthesizing D-serine from formaldehyde and glycine, recombinant DNA constructed by integrating such DNA into a vector, a transformant transformed with the recombinant DNA, and a method for producing D-serine from formaldehyde and glycine with the use of the enzyme.
Abstract: Disclosed is a catalyst for olefin polymerization, comprising: Component [A]: a prepolymer obtained by olefin prepolymerization on solid titanium catalyst component having an average particle size of 25 to 70 ?m produced by contacting of a solid component (i) having an average particle size of 26 to 75 ?m, containing magnesium, titanium, halogen, and an electron donor (c3), and being free from detachment of titanium by washing with hexane at 25° C., a polar compound (ii) having a dipole moment of 0.50 to 4.
Abstract: An object is to obtain a dielectric layer constituting material, a capacitor circuit forming piece, etc. in which unnecessary dielectric layer is removed except capacitor circuit parts that improve accuracy of position of an embedded capacitor circuit in a multi-layer printed wiring board. For the purpose of achieving the object, “a method for manufacturing a dielectric layer constituting material characterized in that step a is a step for forming a first electrode circuit by etching a conductor layer on one side of a metal clad dielectric comprising a conductor layer on each side of a dielectric layer; step b is a step for removing the dielectric layer that is exposed between the first electrode circuits to manufacture the dielectric layer constituting material; and the step a is conducted and then the step b is conducted” is adopted.
Abstract: An anode for a nonaqueous secondary battery comprising a current collector having formed thereon a first covering layer containing tin, a tin alloy, aluminum or an aluminum alloy and a second covering layer containing a metal having low capability of forming a lithium compound in that order. The anode may have an additional first covering layer formed on the second covering layer. A covering layer containing a copper etc. may be formed as an uppermost layer. Each layer can be formed by heat treating to get desired property. As heat treatment can be done in a short time, it has a great cost merit.
Abstract: A polypropylene based nonwoven fabric is excellent in surface appearance and stretch properties and exhibits a small residual strain and excellent adhesiveness to polyolefins. The nonwoven fabric is obtained by forming a polypropylene resin composition comprising 1 to 40 weight parts of (i) an isotactic polypropylene, and 60 to 99 weight parts of (ii) a propylene/ethylene/?-olefin copolymer obtained by copolymerizing 45 to 89 mole % of propylene, 10 to 25 mole % of ethylene and the balance of ?-olefin having 4 to 20 carbon atoms (with the proviso that the copolymerized amount of the ?-olefin having 4 to 20 carbon atoms does not exceed 30 mole %), characterized by a small residual strain after stretching at a stretch ratio of 150%. The nonwoven fabric can be effectively used as sanitary materials or the like by virtue of its characteristics including stretch properties.
Abstract: An object of the present invention is to provide a material for forming a capacitor layer comprising a dielectric layer formed by any one of a sol-gel method, an MOCVD method, and a sputtering deposition method. The material can reduce a leakage current of a capacitor circuit. In order to achieve the object, a material for forming a capacitor layer comprising a dielectric layer between a first conductive layer to be used for forming a top electrode and a second conductive layer to be used for forming a bottom electrode, characterized in that the dielectric layer is a dielectric oxide film formed by any one of a sol-gel method, an MOCVD method, and a sputtering deposition method; and particles constituting the dielectric oxide film are impregnated with a resin component is employed.
Abstract: An ethylene-based polymer which is a copolymer obtained from ethylene and a C3 to C10?-olefin and satisfies the following requirements (i), (ii), (iii) and (iv) simultaneously provides a blow-molded product and an extrusion-molded product excellent in moldability, mechanical strength and outward appearance. (i) melt flow rate [MFR2 (g/10 min)] under a loading of 2.16 kg at 190° C. is in the range of 0.01 to 10, (ii) melt tension [MT (g)] and the above melt flow rate [MFR2 (g/10 min)] satisfy the following relationship: MT?3.2×MFR2?0.55, (iii) an activation energy [Ea] of fluidization is less than 30 (KJ/mol), and (iv) swell ratio is 1.36 or more.
Abstract: The object is to provide copper foil of high adhesion even when the roughness Rz of a nodular surface of the copper foil is low, and a method of manufacturing the copper foil. To achieve this object, there is adopted a copper foil which is characterized in that an area coefficient C(S), which is defined by A(S)/B(S) from a three-dimensional surface area A(S), which is obtained by performing three-dimensional measurement of a surface area of a nodular surface of a copper foil sample S under a laser microscope, and from a measuring region area B(S), which is an area of a measuring region of the three-dimensional surface area A(S), and a roughness Rz(S) of a nodular surface of the copper foil sample S, which is measured by a stylus-type roughness meter, have a relationship of equation (1) below, and in that the roughness Rz(S) is 1.0 ?m to 3.0 ?m, 0.5×Rz(S)+0.5?C(S) ??(1) where Rz(S) is a numerical value represented by ?m.
Abstract: A method comprising: a first process of placing a laminated rotor core (13) in a preheating device (18) to preheat the laminated core (13); a second process of removing the preheated laminated core (13) from the preheating device (18) and disposing the laminated core (13) between upper and lower dies (14, 15) of a resin sealing apparatus (29); a third process of pressing the laminated core (13) by the upper and lower dies (14, 15) and liquefying resin material (17) in resin reservoir pots (16) by heating; and a fourth process of ejecting the liquefied resin material (17) from the pots (16) into the magnet insertion holes (12) by plungers (32) inserted and moving vertically in the pots (16) and thermally curing the resin material (17). The method improves efficiency of resin sealing the permanent magnets (11) in the laminated core (13).