Patents Assigned to MKS Instruments
  • Publication number: 20150247586
    Abstract: Pilot valve structures are described as including a main valve having a main flow body and having an inlet and outlet, and a diaphragm, with a perimeter, a moveable portion, and first and second sides. A main flow orifice is located in the flow body between the inlet and outlet. A main valve plug is attached to and/or disposed in the moveable portion of the diaphragm and opens and closes the flow orifice when the moveable portion of the diaphragm is in first and second positions. The pilot valve also includes a pilot valve inlet that is connected to the flow path of the main flow body. A pilot valve outlet/orifice is disposed within and co-located with the main valve plug. The pilot valve includes a pilot valve plug, which is moveable to open and close the pilot valve orifice. Related mass flow controllers with such pilot valve structures are further described.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 3, 2015
    Applicant: MKS Instruments, Inc.
    Inventor: Richard Gomes, II
  • Publication number: 20150232333
    Abstract: A system and method for facilitating a chemical reaction is provided. The system can have an electrically conductive member. The electrically conductive member is capable of holding a chemical mixture. The electrically conductive member is directly coupled to a power source and is heated when the power source is on. When a chemical mixture is within the electrically conductive member and the power source is on, the chemical mixture is heated such that a chemical reaction can occur.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 20, 2015
    Applicant: MKS Instruments, Inc.
    Inventors: Johannes Seiwert, Christiane Gottschalk, Joachim Lohr, Martin Blacha
  • Patent number: 9069345
    Abstract: A method, controller, and system for controlling a manufacturing process (batch-type or continuous-type) with a multivariate model are described. Dependent variable data and manipulated variable data are received. Dependent variable data represents values of uncontrolled process parameters from a plurality of sensors. Manipulated variable data represents controlled or setpoint values of controllable process parameters of a plurality of process tools. A predicted operational value, multivariate statistic, or both are determined based on the received data, and operating parameters of the manufacturing process are determined based on the predicted score, multivariate statistic, or both.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: June 30, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Christopher Peter McCready, Svante Bjarne Wold
  • Patent number: 9056262
    Abstract: The invention provides, in one aspect, a system for recirculating ozonated liquid. The system includes a contactor including at least two inlets and at least two outlets. The contactor is in fluid communication with a first liquid source at a first contactor inlet and a second liquid source at a second contactor inlet, and the second contactor inlet receives gas that purges at least a portion of gas from liquid received at the first contactor inlet. The purged gas exits the contactor at a first contactor outlet. The contactor is in fluid communication with the second liquid source at a second contactor outlet, and the contactor drains at least a portion of the liquid in the contactor, the drained liquid exiting the contactor at the second contactor outlet. The contactor includes a third inlet in fluid communication with the first liquid source, the third inlet allowing the first liquid source to release liquid at an ambient pressure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 16, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Johannes Heinrich Seiwert, Ulrich Alfred Brammer, Martin Blacha, Gerhard Joachim Schnaiter
  • Publication number: 20150160126
    Abstract: Methods and systems are provided for monitoring at least one gas in a sample gas. An exemplary system includes a source used for generating a beam of radiation, at least one retro-reflector configured to receive the beam of radiation from the source in an incident direction and reflect the beam of radiation toward the source in alignment with the incident direction, and a motor configured to move the at least one retro-reflector with respect to the source in a direction collinear with the incident direction. The system also includes a sample cell storing a sample gas comprising at least one gas. The sample cell is configured to allow at least a portion of an extracted beam of radiation from a cavity, defined by the source and the at least one retro-reflector, to propagate therethrough.
    Type: Application
    Filed: May 12, 2014
    Publication date: June 11, 2015
    Applicant: MKS Instruments, Inc.
    Inventor: Robert M. Carangelo
  • Patent number: 9041292
    Abstract: Controlling a phase and/or a frequency of a RF generator. The RF generator includes a power source, a sensor, and a sensor signal processing unit. The sensor signal processing unit is coupled to the power source and to the sensor. The sensor signal processing unit controls the phase and/or the frequency of a RF generator.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: May 26, 2015
    Assignee: MKS Instruments, Inc.
    Inventor: David J. Coumou
  • Patent number: 9041471
    Abstract: A radio frequency system includes a power amplifier that outputs a radio frequency signal to a matching network via a transmission line between the power amplifier and the matching network. A sensor monitors the radio frequency signal and generates first sensor signals based on the radio frequency signal. A distortion module determines a first distortion value according to at least one of (i) a sinusoidal function of the first sensor signals and (ii) a cross-correlation function of the first sensor signals. A first correction circuit (i) generates a first impedance tuning value based on the first distortion value and a first predetermined value, and (ii) provides feedforward control of impedance matching performed within the matching network including outputting the first impedance tuning value to one of the power amplifier and the matching network.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: May 26, 2015
    Assignee: MKS Instruments, Inc.
    Inventor: David J. Coumou
  • Patent number: 9039985
    Abstract: Ozone generator cells that include two thermally conductive plates that maintain contact between various layers of the cells in the absence of a bonding agent. The cells lack aluminum-containing materials in the discharge region of the cell.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: May 26, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: David Kingston Owens, Paul Michael Meneghini
  • Patent number: 9040907
    Abstract: An apparatus includes an electrostatic ion trap and electronics configured to measure parameters of the ion trap and configured to adjust ion trap settings based on the measured parameters. A method of tuning the electrostatic ion trap includes, under automatic electronic control, measuring parameters of the ion trap and adjusting ion trap settings based on the measured parameters.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 26, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Gerardo A. Brucker, G. Jeffery Rathbone, Brian J. Horvath, Timothy C. Swinney, Stephen C. Blouch, Jeffrey G. McCarthy, Timothy R. Piwonka-Corle
  • Patent number: 9041480
    Abstract: A radio frequency (RF) generation system includes an impedance determination module that receives an RF voltage and an RF current. The impedance determination module further determines an RF generator impedance based on the RF voltage and the RF current. The RF generation system also includes a control module that determines a plurality of electrical values based on the RF generator impedance. The matching module further matches an impedance of a load based on the RF generator impedance and the plurality of electrical components. The matching module also determines a 2 port transfer function based on the plurality of electrical values. The RF generation system also includes a virtual sensor module that estimates a load voltage, a load current, and a load impedance based on the RF voltage, the RF generator, the RF generator impedance, and the 2 port transfer function.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Aaron T. Radomski, Dennis M. Brown, Nicholas Nelson
  • Patent number: 9011633
    Abstract: A plasma generator system for reducing the effects of impedance mismatch. The system has a variable frequency source having an output for emitting an RF signal. A plasma chamber has an input for receiving the RF signal. The variable frequency source modulates at least one of the frequency and phase of the RF signal to improve the system tolerance of impedance mismatches between the output of the variable frequency source and the input of the plasma chamber.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: April 21, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Scott R. Bullock, Aaron Radomski, Brent Irvine
  • Patent number: 8997791
    Abstract: A system for dividing a single mass flow into a plurality N of secondary flows includes an inlet configured to receive the single mass flow, a master FRC (flow ratio controller), and one or more slave FRCs. Each FRC is connected to the inlet and including at least one flow channel. The master FRC and the slave FRCs include in combination a total of N flow channels. Each flow channel i (i=1, . . . , N) is connected to carry a corresponding one of the N secondary flows. In response to preselected ratio setpoints received from a host controller, the master FRC and the slave FRCs maintain ratios Qi/QT (i=1, . . . , N) between individual flow rates Qi (i=1, . . . , N) and a total flow rate QT at the preselected ratio set points.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: April 7, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Michael L'Bassi, Junhua Ding, David D'Entremont
  • Patent number: 8997686
    Abstract: A system for and method of delivering pulses of a desired mass of gas to a tool is described.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 7, 2015
    Assignee: MKS Instruments, Inc.
    Inventor: Junhua Ding
  • Patent number: 9000364
    Abstract: An electrostatic ion trap confines ions of different mass to charge ratios and kinetic energies within an anharmonic potential well. The ion trap is also provided with a small amplitude AC drive that excites confined ions. The mass dependent amplitudes of oscillation of the confined ions are increased as their energies increase, due to an autoresonance between the AC drive frequency and the natural oscillation frequencies of the ions, until the oscillation amplitudes of the ions exceed the physical dimensions of the trap, or the ions fragment or undergo any other physical or chemical transformation.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: April 7, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Alexei Victorovich Ermakov, Barbara Jane Hinch
  • Patent number: 9001335
    Abstract: A method is provided for monitoring one or more silicon-containing compounds present in a biogas. The method includes generating a first absorption spectrum based on a ratio of a first spectral measurement and a second spectral measurement. The first spectral measurement is from a non-absorptive gas having substantially no infrared absorptions in a specified wavelength range of interest and the second spectral measurement is from a sample gas comprising the biogas. The method includes generating at least one surrogate absorption spectrum based on, at least, individual absorption spectrum for each of a subset of one or more silicon-containing compounds selected from a larger set of known silicon-containing compounds with known concentrations. A total concentration of the one or more silicon-containing compounds in the biogas can be calculated based on the first absorption spectrum and the at least one surrogate absorption spectrum.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: April 7, 2015
    Assignee: MKS Instruments Inc.
    Inventors: Charles Mark Phillips, Barbara Marshik-Geurts, Leonard I. Kamlet, Martin L. Spartz, Vidi Saptari
  • Patent number: 8952765
    Abstract: A radio frequency generator includes a power control module, a frequency control module and a pulse generating module. The power control module is configured to generate a power signal indicating power levels for target states of a power amplifier. The frequency control module is configured to generate a frequency signal indicating frequencies for the target states of the power amplifier. The pulse generating module is configured to (i) supply an output signal to the power amplifier, (ii) recall at least one of a latest power level or a latest frequency for one of the target states of the power amplifier, and (iii) adjust a current power level and a current frequency of the output signal from a first state to a second state based on the power signal, the frequency signal, and at least one of the latest power level and the latest frequency of the power amplifier.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 10, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Larry J. Fisk, II, Amish Rughoonundon
  • Patent number: 8947098
    Abstract: An ionization gauge that measures pressure has an electron source that emits electrons, and an anode that defines an ionization space. The gauge also includes a collector electrode to collect ions formed by an impact between the electrons and a gas and to measure pressure based on the collected ions. The electron source is dynamically varied in emission current between a plurality of emission levels dependent on pressure and a second parameter other than pressure. The ionization gauge may also vary various operating parameters of the gauge components according to parameters stored in a non-volatile memory and selected by a user.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: February 3, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Larry K. Carmichael, Jesse A. Weber, John H. Henry, Michael N. Schott, Gerardo A. Brucker, Kenneth D. Van Antwerp, Jr.
  • Patent number: 8928329
    Abstract: A fast response output signal circuit (10) for a cold cathode gauge is provided to produce a fast response output signal (48) in addition to a voltage output signal (40) that is representative of the pressure in the cold cathode gauge. The fast response output signal (48) is either on or off, thus can be used to trigger a closing of an isolation valve or other responsive action upon a change in pressure that attains or exceeds a certain set point threshold. The fast response output signal is produced and processed with analog circuits, but the set point is produced with a microprocessor. The voltage output signal can be produced as a logarithmic function of the pressure.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: January 6, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Bert Downing, Donghua Gu, Neil T. Peacock
  • Patent number: 8912835
    Abstract: A method for controlling pulsed power that includes measuring a first pulse of power from a power amplifier to obtain data. The method also includes generating a first signal to adjust a second pulse of delivered power, the first signal correlated to the data to minimize a power difference between a power set point and a substantially stable portion of the second pulse. The method also includes generating a second signal to adjust the second pulse of delivered power, the second signal correlated to the data to minimize an amplitude difference between a peak of the second pulse and the substantially stable portion of the second pulse.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: December 16, 2014
    Assignee: MKS Instruments Inc.
    Inventors: Siddarth Nagarkatti, Feng Tian, David Lam, Abdul Rashid, Souheil Benzerrouk, Ilya Bystryak, David Menzer, Jack J. Schuss, Jesse E. Ambrosina
  • Patent number: 8887575
    Abstract: One or more reactive gases are introduced to a capacitance manometer at a particular area or areas of the diaphragm between the inner and outer capacitive electrodes so the error-inducing measurement effects of positive and negative bending are neutralized or minimized. Additionally, a guard structure may be used with the electrode structure of the capacitance manometer. The guard structure presents an area that is relatively insensitive to the diffusion of the gas into the diaphragm and the resulting changing surface tension, thus providing increased or optimal stability of the zero reading of the manometer. The guard may also provide electrostatic isolation of the electrodes.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: November 18, 2014
    Assignee: MKS Instruments, Inc.
    Inventors: Steven D. Blankenship, Paul D. Lucas