Patents Assigned to Nanosys, Inc.
-
Patent number: 7888292Abstract: Methods of detecting a component of interest, a change in charge, a pH, a cellular response using nanosensors are provided. Nanosensors, including nanowires and nanowire arrays comprising functionalized and/or non-functionalized nanowires are provided. Nanosensors are used for detection in cellular fragmentation, multiple concentration analysis, glucose detection, and intracellular analysis.Type: GrantFiled: October 18, 2007Date of Patent: February 15, 2011Assignee: Nanosys, Inc.Inventors: Larry Bock, R. Hugh Daniels, Stephen Empedocles, John C. Owicki
-
Publication number: 20110034038Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).Type: ApplicationFiled: June 29, 2010Publication date: February 10, 2011Applicant: NANOSYS, Inc.Inventors: Jian Chen, Karen Chu Cruden, Xiangfeng Duan, Chao Liu, J. Wallace Parce
-
Patent number: 7871870Abstract: Methods, systems, and apparatuses for electronic devices having improved gate structures are described. An electronic device includes at least one nanowire. A gate contact is positioned along at least a portion of a length of the at least one nanowire. A dielectric material layer is between the gate contact and the at least one nanowire. A source contact and a drain contact are in contact with the at least one nanowire. At least a portion of the source contact and/or the drain contact overlaps with the gate contact along the nanowire the length. In another aspect, an electronic device includes a nanowire having a semiconductor core surrounded by an insulating shell layer. A ring shaped first gate region surrounds the nanowire along a portion of the length of the nanowire. A second gate region is positioned along the length of the nanowire between the nanowire and the substrate.Type: GrantFiled: February 9, 2010Date of Patent: January 18, 2011Assignee: Nanosys, Inc.Inventors: Shahriar Mostarshed, Jian Chen, Francisco A. Leon, Yaoling Pan, Linda T. Romano
-
Publication number: 20110008707Abstract: A catalyst layer for a fuel cell membrane electrode assembly includes a plurality of agglomerates, adjacent ones of the plurality of agglomerates contacting with each other with pores provided between said adjacent ones of the plurality of agglomerates, each of the plurality of agglomerates being formed by packing a plurality of catalysts each consisting of noble metal fine particles supported on a fiber-like support material, adjacent ones of the plurality of catalysts contacting with each other with pores provided between said adjacent ones of the plurality of catalysts, and each of the plurality of catalysts contacting with a plurality of catalysts other than said each catalyst at a plurality of contact points. This allows providing a catalyst layer, a fuel cell membrane electrode assembly, and a fuel cell, each of which has compact size and excellent power generation performance, and a method for producing the same.Type: ApplicationFiled: May 3, 2010Publication date: January 13, 2011Applicants: NANOSYS, Inc., Sharp Kabushiki KaishaInventors: Masashi MURAOKA, Kohtaroh Saitoh, Hirotaka Mizuhata, Takenori Onishi, Yimin Zhu, Ionel C. Stefan, Baixin Qian, Jay L. Goldman
-
Publication number: 20100323500Abstract: The present invention relates to a system and process for producing a nanowire-material composite. A substrate having nanowires attached to a portion of at least one surface is provided. A material is deposited over the portion to form the nanowire-material composite. The process further optionally includes separating the nanowire-material composite from the substrate to form a freestanding nanowire-material composite. The freestanding nanowire material composite is optionally further processed into a electronic substrate. A variety of electronic substrates can be produced using the methods described herein. For example, a multi-color light-emitting diode can be produced from multiple, stacked layers of nanowire-material composites, each composite layer emitting light at a different wavelength.Type: ApplicationFiled: August 11, 2010Publication date: December 23, 2010Applicant: NANOSYS, INC.Inventors: Mihai Buretea, Jian Chen, Calvin Chow, Chunming Niu, Yaoling Pan, J. Wallace Parce, Linda T. Romano, David Stumbo
-
Patent number: 7851841Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.Type: GrantFiled: June 8, 2007Date of Patent: December 14, 2010Assignee: Nanosys, Inc.Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David P. Stumbo, J. Wallace Parce, Jay L. Goldman
-
Patent number: 7847341Abstract: Methods and apparatuses for electronic devices such as non-volatile memory devices are described. The memory devices include a multi-layer control dielectric, such as a double or triple layer. The multi-layer control dielectric includes a combination of high-k dielectric materials such as aluminum oxide, hafnium oxide, and/or hybrid films of hafnium aluminum oxide. The multi-layer control dielectric provides enhanced characteristics, including increased charge retention, enhanced memory program/erase window, improved reliability and stability, with feasibility for single or multi state (e.g., two, three or four bit) operation.Type: GrantFiled: October 8, 2008Date of Patent: December 7, 2010Assignee: Nanosys, Inc.Inventors: Jian Chen, Rahul Sharangpani
-
Patent number: 7842432Abstract: The present invention is directed to nanowire structures and interconnected nanowire networks comprising such structures, as well as methods for their production. The nanowire structures comprise a nanowire core, a carbon-based layer, and in additional embodiments, carbon-based structures such as nanographitic plates consisting of graphenes formed on the nanowire cores, interconnecting the nanowire structures in the networks. The networks are porous structures that can be formed into membranes or particles. The nanowire structures and the networks formed using them are useful in catalyst and electrode applications, including fuel cells, as well as field emission devices, support substrates and chromatographic applications.Type: GrantFiled: June 12, 2007Date of Patent: November 30, 2010Assignee: Nanosys, Inc.Inventors: Chunming Niu, Baixin Qian, Ionel Stefan
-
Publication number: 20100297502Abstract: The present invention relates to nanostructured materials (including nanowires) for use in batteries. Exemplary materials include carbon-comprising, Si-based nanostructures, nanostructured materials disposed on carbon-based substrates, and nanostructures comprising nanoscale scaffolds. The present invention also provides methods of preparing battery electrodes, and batteries, using the nanostructured materials.Type: ApplicationFiled: May 19, 2010Publication date: November 25, 2010Applicant: NANOSYS, Inc.Inventors: Yimin ZHU, Jay L. GOLDMAN, Jason HARTLOVE, Hans Jurgen HOFLER, Baixin QIAN, Vijendra SAHI, Ionel C. STEFAN, David P. STUMBO
-
Publication number: 20100285972Abstract: This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates, as well as methods and uses for such substrates.Type: ApplicationFiled: October 17, 2007Publication date: November 11, 2010Applicant: Nanosys, Inc.Inventors: Roberto Dubrow, Robert Hugh Daniels, J. Wallace Parce, Matthew Murphy, Jim Hamilton, Erik Scher, Dave Stumbo, Chunming Niu, Linda T. Romano, Jay Goldman, Vijendra Sahi, Jeffery A. Whiteford
-
Patent number: 7829351Abstract: Methods and systems for depositing nanomaterials onto a receiving substrate and optionally for depositing those materials in a desired orientation, that comprise providing nanomaterials on a transfer substrate and contacting the nanomaterials with an adherent material disposed upon a surface or portions of a surface of a receiving substrate. Orientation is optionally provided by moving the transfer and receiving substrates relative to each other during the transfer process.Type: GrantFiled: August 21, 2006Date of Patent: November 9, 2010Assignee: Nanosys, Inc.Inventors: Robert S. Dubrow, Linda T. Romano, David P. Stumbo
-
Publication number: 20100279513Abstract: The present invention is directed to compositions of matter, systems, and methods to manufacture nanowires. In an embodiment, a buffer layer is placed on a nanowire growth substrate and catalytic nanoparticles are added to form a catalytic-coated nanowire growth substrate. Methods to develop and use this catalytic-coated nanowire growth substrate are disclosed. In a further aspect of the invention, in an embodiment a nanowire growth system using a foil roller to manufacture nanowires is provided.Type: ApplicationFiled: September 23, 2008Publication date: November 4, 2010Applicant: NANOSYS, INC.Inventors: Chunming Niu, Jay L. Goldman, Xiangfeng Duan, Vijendra Sahi
-
Publication number: 20100276638Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.Type: ApplicationFiled: April 29, 2010Publication date: November 4, 2010Applicant: NANOSYS, Inc.Inventors: Mingjun Liu, Robert Dubrow, William P. Freeman, Adrienne Kucma, J. Wallace Parce
-
Publication number: 20100261013Abstract: The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.Type: ApplicationFiled: June 22, 2010Publication date: October 14, 2010Applicant: NANOSYS, INC.Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, David P. Stumbo
-
Patent number: 7803574Abstract: This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates for use in various medical devices, as well as methods and uses for such substrates and medical devices. In one particular embodiment, a method of administering a composition to a patient is disclosed which comprises providing a composition-eluting device, said composition-eluting device comprising at least a first surface and a plurality of nanostructures attached to the first surface, and introducing the composition-eluting device into the body of the patient.Type: GrantFiled: February 22, 2007Date of Patent: September 28, 2010Assignee: Nanosys, Inc.Inventors: Tejal Desai, R. Hugh Daniels, Vijendra Sahi
-
Publication number: 20100237288Abstract: Nanowire dispersion compositions (and uses thereof) are disclosed comprising a plurality of inorganic nanowires suspended in an aqueous or non-aqueous solution comprising at least one low molecular weight and/or low HLB (Hydrophile-Lipophile Balance) value dispersant. Methods of further improving the dispersability of a plurality of inorganic nanowires in an aqueous or non-aqueous solution comprise, for example, oxidizing the surface of the nanowires prior to dispersing the nanowires in the aqueous or non-aqueous solution.Type: ApplicationFiled: May 14, 2010Publication date: September 23, 2010Applicant: NANOSYS, INC.Inventors: Cheri X.Y. Pereira, Francesco Lemmi, David P. Stumbo
-
Publication number: 20100233585Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.Type: ApplicationFiled: December 20, 2006Publication date: September 16, 2010Applicant: Nanosys, Inc.Inventors: Chunming Niu, Calvin Y.H. Chow, Stephen A. Empedocles, J. Wallace Parce
-
Patent number: 7794600Abstract: The present invention relates to a method of processing nanocrystals. The method comprises providing a mixture comprising nanocrystals, contaminants and a first solvent in which the nanocrystals are soluble, and using chromatography to reduce the amount of contaminants in the mixture. The method optionally comprises isolating the nanocrystals after chromatography. The method allows for the production of nanocrystal compositions having a total amount of surfactant associated therewith, the amount of surfactant comprising an amount of bound surfactant and an amount of free surfactant in the solvent, the amount of free surfactant being less than about 1% of the total amount of surfactant in the solvent. The present invention, accordingly, also relates to such compositions and corresponding composites of nanocrystals in organic polymer matrices.Type: GrantFiled: August 25, 2005Date of Patent: September 14, 2010Assignee: Nanosys, Inc.Inventors: Mihai A. Buretea, Joel Gamoras, Erik C. Scher, Jeffery A. Whiteford
-
Patent number: 7795125Abstract: The present invention relates to a system and process for producing a nanowire-material composite. A substrate having nanowires attached to a portion of at least one surface is provided. A material is deposited over the portion to form the nanowire-material composite. The process further optionally includes separating the nanowire-material composite from the substrate to form a freestanding nanowire-material composite. The freestanding nanowire material composite is optionally further processed into a electronic substrate. A variety of electronic substrates can be produced using the methods described herein. For example, a multi-color light-emitting diode can be produced from multiple, stacked layers of nanowire-material composites, each composite layer emitting light at a different wavelength.Type: GrantFiled: November 20, 2008Date of Patent: September 14, 2010Assignee: Nanosys, Inc.Inventors: Mihai A. Buretea, Jian Chen, Calvin Y. H. Chow, Chunming Niu, Yaoling Pan, J. Wallace Parce, Linda T. Romano, David P. Stumbo
-
Patent number: 7785922Abstract: The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors, as well as us of patterned substrates to grow oriented nanowires. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrificial growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.Type: GrantFiled: December 20, 2006Date of Patent: August 31, 2010Assignee: Nanosys, Inc.Inventor: Virginia Robbins