Patents Assigned to Nanosys, Inc.
  • Publication number: 20130075014
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically sealed luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Application
    Filed: November 26, 2012
    Publication date: March 28, 2013
    Applicant: NANOSYS, INC.
    Inventor: Nanosys, Inc.
  • Publication number: 20130043433
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can be used as refractive index matching components, filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
    Type: Application
    Filed: October 2, 2012
    Publication date: February 21, 2013
    Applicant: NANOSYS, INC.
    Inventor: Nanosys, Inc.
  • Patent number: 8364243
    Abstract: The invention relates to non-fouling hydrophobic reflective surfaces for a variety of applications which in one embodiment related to medical device applications comprises a method of performing a medical procedure using a surgical navigation system which includes the steps of placing one or more reflective spheres on a surgical instrument or apparatus, the reflective spheres comprising a hydrophobic coating on a sub-micron structured surface of the spheres, wherein the spheres substantially maintain their reflective properties after the spheres are contacted with a biological fluid; shining light on the reflective spheres; capturing reflected light from the spheres with a camera or other device; and registering and/or tracking a location and/or position of the spheres.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 29, 2013
    Assignee: Nanosys, Inc.
    Inventors: Robert Enzerink, R. Hugh Daniels
  • Patent number: 8357475
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: January 22, 2013
    Assignee: Nanosys, Inc.
    Inventors: Chunming Niu, Calvin Y. H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Patent number: 8343575
    Abstract: The present invention provides methods for hermetically sealing luminescent nanocrystals, as well as compositions and containers comprising hermetically sealed luminescent nanocrystals. By hermetically sealing the luminescent nanocrystals, enhanced lifetime and luminescence can be achieved.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: January 1, 2013
    Assignee: Nanosys, Inc.
    Inventor: Robert S. Dubrow
  • Patent number: 8319002
    Abstract: Methods, systems, and apparatuses for nanomaterial-enhanced platelet binding and hemostatic medical devices are provided. Hemostatic materials and structures are provided that induce platelet binding, including platelet binding and the coagulation of blood at a wound/opening caused by trauma, a surgical procedure, ulceration, or other cause. Example embodiments include platelet binding devices, hemostatic bandages, hemostatic plugs, and hemostatic formulations. The hemostatic materials and structures may incorporate nanostructures and/or further hemostatic elements such as polymers, silicon nanofibers, silicon dioxide nanofibers, and/or glass beads into a highly absorbent, gelling scaffold. The hemostatic materials and structures may be resorbable.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: November 27, 2012
    Assignee: Nanosys, Inc.
    Inventors: R. Hugh Daniels, Esther Li, Erica J. Rogers
  • Publication number: 20120282540
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Applicant: NANOSYS, INC.
    Inventors: Chunming Niu, Calvin Y.H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Patent number: 8304595
    Abstract: Methods, systems, and apparatuses for nanomaterial-enhanced hemostatic medical devices are provided. Hemostatic materials and structures are provided that induce coagulation of blood at a wound/opening caused by trauma, a surgical procedure, ulceration, or other cause. The hemostatic materials and structures may incorporate nanostructures and/or further hemostatic elements such as polymers and/or glass beads. The hemostatic materials and structures may be resorbable. Example embodiments include hemostatic bandages, hemostatic plugs, and hemostatic formulations.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 6, 2012
    Assignee: Nanosys, Inc.
    Inventors: R. Hugh Daniels, Robert S. Dubrow, Robert Enzerink, Esther Li, Vijendra Sahi, Jay L. Goldman, J. Wallace Parce
  • Patent number: 8293624
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: October 23, 2012
    Assignee: Nanosys, Inc.
    Inventors: Linda T. Romano, Jian Chen
  • Patent number: 8283412
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: October 9, 2012
    Assignee: Nanosys, Inc.
    Inventors: Mingjun Liu, Robert Dubrow, William P. Freeman, Adrienne Kucma, J. Wallace Parce
  • Patent number: 8278011
    Abstract: The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 2, 2012
    Assignee: Nanosys, Inc.
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan
  • Patent number: 8252164
    Abstract: The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: August 28, 2012
    Assignees: Nanosys, Inc., Sharp Kabushiki Kaisha
    Inventors: Samuel Martin, Xiangfeng Duan, Katsumasa Fujii, James M. Hamilton, Hiroshi Iwata, Francisco Leon, Jeffrey Miller, Tetsu Negishi, Hiroshi Ohki, J. Wallace Parce, Cheri X. Y. Pereira, Paul John Schuele, Akihide Shibata, David P. Stumbo, Yasunobu Okada
  • Patent number: 8216440
    Abstract: An object of the present invention is to implement a method for aligning microscopic structures in desired locations and in a desired direction, in order to align microscopic structures, such as nanostructures, with high precision. The method includes a substrate forming step of forming three electrodes to which independent potentials can be applied, a microscopic structure liquid applying step of applying a liquid in which microscopic structures are dispersed to the insulating substrate, and a microscopic structure aligning step of applying respective voltages to the three electrodes to align the microscopic structures in locations defined by the electrodes.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: July 10, 2012
    Assignees: Sharp Kabushiki Kaisha, Nanosys, Inc.
    Inventors: Akihide Shibata, Yasunobu Okada
  • Publication number: 20120135158
    Abstract: Methods, systems, and apparatuses for nanowire deposition are provided. A deposition system includes an enclosed flow channel, an inlet port, and an electrical signal source. The inlet port provides a suspension that includes nanowires into the channel. The electrical signal source is coupled to an electrode pair in the channel to generate an electric field to associate at least one nanowire from the suspension with the electrode pair. The deposition system may include various further features, including being configured to receive multiple solution types, having various electrode geometries, having a rotatable flow channel, having additional electrical conductors, and further aspects.
    Type: Application
    Filed: May 25, 2010
    Publication date: May 31, 2012
    Applicants: SHARP KABUSHIKI KAISHA, NANOSYS, INC.
    Inventors: Erik Freer, James M. Hamilton, David P. Stumbo, Kenji Komiya, Akihide Shibata
  • Publication number: 20120113672
    Abstract: Light-emitting quantum dot films, quantum dot lighting devices, and quantum dot-based backlight units are provided. Related compositions, components, and methods are also described. Improved quantum dot encapsulation and matrix materials are provided. Quantum dot films with protective barriers are described. High-efficiency, high brightness, and high-color purity quantum dot-based lighting devices are also included, as well as methods for improving efficiency and optical characteristics in quantum dot-based lighting devices.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 10, 2012
    Applicant: NANOSYS, INC.
    Inventors: Robert S. Dubrow, William P. Freeman, Ernest Lee, Paul Furuta
  • Patent number: 8143703
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: March 27, 2012
    Assignee: Nanosys, Inc.
    Inventors: David L. Heald, Karen Chu Cruden, Xiangfeng Duan, Chao Liu, J. Wallace Parce
  • Publication number: 20120064235
    Abstract: The present invention relates to treating of reflective surfaces to prevent fouling. The present invention also relates to reflective materials treated to prevent fouling, as well as methods of using such reflective materials.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Applicant: NANOSYS, INC.
    Inventors: Robert Enzerink, R. Hugh Daniels
  • Publication number: 20120064294
    Abstract: The present invention relates to treating of reflective surfaces to prevent fouling. The present invention also relates to reflective materials treated to prevent fouling, as well as methods of using such reflective materials.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Applicant: NANOSYS, INC.
    Inventors: Robert Enzerink, R. Hugh Daniels
  • Patent number: 8129768
    Abstract: An integrated circuit device of the present invention includes a substrate on which at least two types of nano wire element are provided. These nano wire elements have functions and materials different from each other. The nano wire elements are constituted by nano wires having sizes differing depending on types of nano wire element. With this, it is possible to dramatically improve a function of the integrated circuit device, as compared with an integrated circuit device including a substrate on which one type of nano wire element is provided.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 6, 2012
    Assignees: Sharp Kabushiki Kaisha, Nanosys, Inc.
    Inventors: Akihide Shibata, Katsumasa Fujii, Yutaka Takafuji, Hiroshi Iwata
  • Patent number: RE43868
    Abstract: This invention provides navel capacitors comprising nanofiber enhanced surface area substrates and structures comprising such capacitors, as well as methods and uses for such capacitors.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: December 25, 2012
    Assignee: Nanosys, Inc.
    Inventors: Calvin Y. H. Chow, Robert Dubrow