Patents Assigned to Novellus Systems
  • Patent number: 9388494
    Abstract: A substrate processing system includes a showerhead that comprises a base portion and a stem portion and that delivers precursor gas to a chamber. A collar connects the showerhead to an upper surface of the chamber. The collar includes a plurality of slots, is arranged around the stem portion of the showerhead, and directs purge gas through the plurality of slots into a region between the base portion of the showerhead and the upper surface of the chamber.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: July 12, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Chunguang Xia, Ramesh Chandrasekharan, Douglas Keil, Edward J. Augustyniak, Karl Leeser
  • Patent number: 9385035
    Abstract: In some method and apparatus disclosed herein, the profile of current delivered to the substrate provides a relatively uniform current density on the substrate surface during immersion. These methods include controlling the current density applied across a substrate's surface during immersion by dynamically controlling the current to account for the changing substrate surface area in contact with electrolyte during immersion. In some cases, current density pulses and/or steps are used during immersion, as well.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: July 5, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Tighe A. Spurlin, Jian Zhou, Edward C. Opocensky, Jonathan Reid, Steven T. Mayer
  • Patent number: 9384959
    Abstract: A purge ring for providing a gas to a wafer processing chamber includes an inlet ring wall defining a ring hole space. An outer perimeter of the inlet ring wall is elliptical. An outer perimeter of the ring hole space is circular. The inlet ring wall is a continuous structure surrounding the ring hole space. An inlet baffle formed within the inlet ring wall surrounds at least 180 degrees of the outer perimeter of the ring hole space. An inlet plenum arranged in a first end of the inlet ring wall provides the gas to the ring hole space through the inlet baffle. An exhaust channel is formed within the inlet ring wall in a second end of the inlet ring wall. An exhaust outlet hole arranged in the second end of the inlet ring wall exhausts the gas out of the ring hole space via the exhaust channel.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: July 5, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Eugene Smargiassi, Stephen Yu-Hong Lau, George D. Kamian, Ming Xi
  • Patent number: 9373497
    Abstract: Methods are provided for cleaning metal regions overlying semiconductor substrates. A method for removing material from a metal region comprises heating the metal region, forming a plasma from a gas comprising hydrogen and carbon dioxide, and exposing the metal region to the plasma.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: June 21, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: David Chen, Haruhiro Harry Goto, Martina Su, Frank Greer, Shamsuddin Alokozai
  • Patent number: 9359688
    Abstract: Disclosed are methods of electroplating a metal onto a substrate surface in an electroplating bath and adjusting the pH of the bath. The methods may include exposing the substrate surface, a counter-electrode, and an acid generating surface to the bath, biasing the substrate surface sufficiently negative relative to the counterelectrode such that metal ions from the bath are reduced and plated onto the substrate surface, and biasing the acid generating surface sufficiently positive relative to the counterelectrode such that free hydrogen ions are generated at the acid generating surface thereby decreasing the pH of the bath. Also disclosed are apparatuses for electroplating metal onto a substrate surface in an electroplating bath, and for adjusting the pH of the electroplating bath. The apparatuses may include an acid generating surface configured to generate free hydrogen ions in the bath upon supply of sufficient positive voltage bias relative to a counterelectrode electrical contact.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: June 7, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Lee Peng Chua, Thomas A. Ponnuswamy, Mark Rea, Steven T. Mayer
  • Patent number: 9355886
    Abstract: A method and apparatus for conformally depositing a dielectric oxide in high aspect ratio gaps in a substrate is disclosed. A substrate is provided with one or more gaps into a reaction chamber where each gap has a depth to width aspect ratio of greater than about 5:1. A first dielectric oxide layer is deposited in the one or more gaps by CFD. A portion of the first dielectric oxide layer is etched using a plasma etch, where etching the portion of the first dielectric oxide layer occurs at a faster rate near a top surface than near a bottom surface of each gap so that the first dielectric oxide layer has a tapered profile from the top surface to the bottom surface of each gap. A second dielectric oxide layer is deposited in the one or more gaps over the first dielectric oxide layer via CFD.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: May 31, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Shankar Swaminathan, Bart van Schravendijk, Adrien LaVoie, Sesha Varadarajan, Jason Daejin Park, Michal Danek, Naohiro Shoda
  • Patent number: 9340893
    Abstract: Apparatus and methods for electroplating are described. Apparatus described herein include anode supports including positioning mechanisms that maintain a consistent distance between the surface of the wafer and the surface of a consumable anode during plating. Greater uniformity control is achieved.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: May 17, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Jingbin Feng, R. Marshall Stowell, Shantinath Ghongadi, Zhian He, Frederick Dean Wilmot
  • Patent number: 9343296
    Abstract: Disclosed herein are methods of forming SiC/SiCN film layers on surfaces of semiconductor substrates. The methods may include introducing a silicon-containing film-precursor and an organometallic ligand transfer reagent into a processing chamber, adsorbing the silicon-containing film-precursor, the organometallic ligand transfer reagent, or both onto a surface of a semiconductor substrate under conditions whereby either or both form an adsorption-limited layer, and reacting the silicon-containing film-precursor with the organometallic ligand transfer reagent, after either or both have formed the adsorption-limited layer. The reaction results in the forming of the film layer. In some embodiments, a byproduct is also formed which contains substantially all of the metal of the organometallic ligand transfer reagent, and the methods may further include removing the byproduct from the processing chamber. Also disclosed herein are semiconductor processing apparatuses for forming SiC/SiCN film layers.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: May 17, 2016
    Assignee: Novellus Systems, Inc.
    Inventor: Adrien LaVoie
  • Patent number: 9337067
    Abstract: A wafer support assembly including a wafer support and cooling plate with radial thermal chokes is provided. The cooling plate and wafer support may have limited contact and may not contact each other outside of certain limited thermal contact patches. The thermal contact patches may generally define one or more radial thermal choke regions. In some implementations, high- and low-temperature cooling systems may be placed at one or more locations across the cooling plate to assist in temperature management.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: May 10, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Shambhu N. Roy, Vincent E. Burkhart, Scott J. Fields
  • Patent number: 9315899
    Abstract: Semiconductor processing chamber showerheads with contoured faceplates, as well as techniques for producing such faceplates, are provided. Data describing deposition rate as a function of gap distance between a reference showerhead faceplate and a reference substrate may be obtained, as well as data describing deposition rate as a function of location on the substrate when the reference showerhead and the reference substrate are in a fixed arrangement with respect to each other. The two data sets may be used to determine offsets from a reference plane associated with the faceplate that determine a contour profile to be used with the faceplate.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: April 19, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Karl F. Leeser, James S. Sims
  • Patent number: 9309604
    Abstract: An apparatus for electroplating a layer of metal onto the surface of a wafer includes an ionically resistive ionically permeable element located in close proximity of the wafer and an auxiliary cathode located between the anode and the ionically resistive ionically permeable element. The ionically resistive ionically permeable element serves to modulate ionic current at the wafer surface. The auxiliary cathode is configured to shape the current distribution from the anode. The provided configuration effectively redistributes ionic current in the plating system allowing plating of uniform metal layers and mitigating the terminal effect.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: April 12, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Steven Mayer, Jingbin Feng, Zhian He, Jonathan Reid, Seshasayee Varadarajan
  • Patent number: 9309605
    Abstract: Provided herein are methods and apparatus for determining leveler concentration in an electroplating solution. The approach allows the concentration of leveler to be detected and measured, even at very low leveler concentrations. According to the various embodiments, the methods involve providing an electrode with a metal surface, exposing the electrode to a pre-acceleration solution with at least one accelerator, allowing the surface of the electrode to become saturated with accelerator, measuring an electrochemical response while plating the electrode in a solution, and determining the concentration of leveler in the solution by comparing the measured electrochemical response to a model relating leveler concentration to known electrochemical responses. According to other embodiments, the apparatus includes an electrode, a measuring apparatus or an electrochemical cell configured to measure an electrochemical response, and a controller designed to carry out the method outlined above.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: April 12, 2016
    Assignee: Novellus Systems, Inc.
    Inventor: Steven T. Mayer
  • Patent number: 9299559
    Abstract: Provided herein are integration-compatible dielectric films and methods of depositing and modifying them. According to various embodiments, the methods can include deposition of flowable dielectric films targeting specific film properties and/or modification of those properties with an integration-compatible treatment process. In certain embodiments, methods of depositing and modifying flowable dielectric films having tunable wet etch rates and other properties are provided. Wet etch rates can be tuned during integration through am integration-compatible treatment process. Examples of treatment processes include plasma exposure and ultraviolet radiation exposure.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: March 29, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Nerissa Draeger, Karena Shannon, Bart van Schravendijk, Kaihan Ashtiani
  • Patent number: 9287113
    Abstract: Methods and apparatus to form films on sensitive substrates while preventing damage to the sensitive substrate are provided herein. In certain embodiments, methods involve forming a bilayer film on a sensitive substrate that both protects the underlying substrate from damage and possesses desired electrical properties. Also provided are methods and apparatus for evaluating and optimizing the films, including methods to evaluate the amount of substrate damage resulting from a particular deposition process and methods to determine the minimum thickness of a protective layer. The methods and apparatus described herein may be used to deposit films on a variety of sensitive materials such as silicon, cobalt, germanium-antimony-tellerium, silicon-germanium, silicon nitride, silicon carbide, tungsten, titanium, tantalum, chromium, nickel, palladium, ruthenium, or silicon oxide.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: March 15, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Hu Kang, Shankar Swaminathan, Adrien LaVoie, Jon Henri
  • Patent number: 9275884
    Abstract: A substrate handling robot includes an arm section and a wrist portion connected to the arm section. An end effector is connected to the wrist portion and is configured to support a substrate. A housing is arranged adjacent to the end effector and includes a gas outlet that directs gas onto an exposed surface of the substrate during transport.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: March 1, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Mukul Khosla, Ronald Powell, Arun Keshavamurthy, Richard Blank
  • Patent number: 9268340
    Abstract: Flow distribution networks that supply process gas to two or more stations in a multi-station deposition chamber. Each flow distribution network includes an inlet and flow distribution lines for carrying process gas to the stations. The flow distribution lines include a branch point downstream from the inlet and two or more branches downstream from the branch point. Each branch supplies a station. The flow distribution network also includes highly variable flow elements in each branch. Restrictive components are placed downstream from the variable control elements in each branch. These restrictive components are nominally identical and designed to shift the bulk of the pressure drop away from the variable flow components to improve flow balancing while not unduly increasing inlet pressure. In some cases, the load shifting allows the more variable flow components to operate in the unchoked flow regime.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: February 23, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Jeffrey Womack, Stephen Lau
  • Patent number: 9260793
    Abstract: Methods of electroplating metal on a substrate while controlling azimuthal uniformity, include, in one aspect, providing the substrate to the electroplating apparatus configured for rotating the substrate during electroplating, and electroplating the metal on the substrate while rotating the substrate relative to a shield such that a selected portion of the substrate at a selected azimuthal position dwells in a shielded area for a different amount of time than a second portion of the substrate having the same average arc length and the same average radial position and residing at a different angular (azimuthal) position. For example, a semiconductor wafer substrate can be rotated during electroplating slower or faster, when the selected portion of the substrate passes through the shielded area.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: February 16, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, David W. Porter, Bryan L. Buckalew, Robert Rash
  • Patent number: 9255326
    Abstract: Systems and methods deposit a film on a substrate by introducing a precursor gas into a reaction volume of a processing chamber. A substrate is arranged in the reaction volume. After a predetermined soak period, the precursor gas is purged from the reaction volume. The substrate is exposed with plasma gas using a remote plasma source.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 9, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Jeong-Seok Na, Sanjay Gopinath
  • Patent number: 9255329
    Abstract: The present invention relates to a cyclic deposition process suitable for depositing an elemental film. The process employs an enhanced atomic layer deposition technique.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: February 9, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Tony P. Chiang, Karl Leeser
  • Patent number: 9257302
    Abstract: Provided are methods of filling gaps on a substrate by creating flowable silicon oxide-containing films. The methods involve introducing vapor-phase silicon-containing precursor and oxidant reactants into a reaction chamber containing the substrate under conditions such that a condensed flowable film is formed on the substrate. The flowable film at least partially fills gaps on the substrate. In certain embodiments, the methods involve using a catalyst in the formation of the film. The catalyst may be incorporated into one of the reactants and/or introduced as a separate reactant.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: February 9, 2016
    Assignee: Novellus Systems, Inc.
    Inventors: Feng Wang, Brian Lu, Nerissa Draeger, Vishal Gauri, Raashina Humayun, Michal Danek, Bart van Schravendijk, Lakshminarayana Nittala