Patents Assigned to OSRAM OLED GmbH
  • Patent number: 10749084
    Abstract: An optoelectronic component includes a carrier having a chip mounting face, wherein the chip mounting face has a reflection coating, and an optoelectronic semiconductor chip adhesively bonded on the reflection coating by an adhesive so that the reflection coating is subdivided into a first subsection covered by the semiconductor chip and a second subsection, which is free of the semiconductor chip, wherein the adhesive has reflection particles that reflect electromagnetic radiation emitted by the semiconductor chip, and the second subsection is at least partially covered by a corrosion protection layer.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: August 18, 2020
    Assignee: OSRAM OLED GmbH
    Inventor: Thomas Reeswinkel
  • Patent number: 10741996
    Abstract: In one embodiment of the invention, the semiconductor laser (1) comprises a semiconductor layer sequence (2). The semiconductor layer sequence (2) contains an n-type region (23), a p-type region (21) and an active zone (22) lying between the two. A laser beam is produced in a resonator path (3). The resonator path (3) is aligned parallel to the active zone (22). In addition, the semiconductor laser (1) contains an electrical p-contact (41) and an electrical n-contact (43) each of which is located on the associated region (21, 23) of the semiconductor layer sequence (2) and is configured to input current directly into the associated region (21, 23). A p-contact surface (61) is electrically connected to the p-contact (41), and an n-contact surface (63) is electrically connected to the n-contact (43) such that the p-contact surface (61) and the n-contact surface (63) are configured for external electrical and mechanical connection of the semiconductor laser (1).
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: August 11, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Frank Singer, Norwin Von Malm, Tilman Ruegheimer, Thomas Kippes
  • Patent number: 10741993
    Abstract: A laser component including a molded body, and a laser chip embedded into the molded body and configured to emit a laser beam in an emission direction, wherein a surface of the molded body includes a deflection section arranged and inclined relative to the emission direction such that a laser beam emitted by the laser chip impinges on the deflection section and is subjected to total internal reflection at the deflection section.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: August 11, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Hubert Halbritter, Andreas Wojcik
  • Patent number: 10727386
    Abstract: A radiation-emitting component includes a radiation source including at least one semiconductor layer sequence that generates radiation; an optical waveguide device disposed downstream of the radiation source; and a conversion element for radiation conversion disposed downstream of the optical waveguide device, wherein radiation is emittable from the radiation source via an emission surface and couplable into the optical waveguide device, radiation is couplable from the optical waveguide device into the conversion element via an input surface, and the emission surface of the radiation source is larger than the input surface of the conversion element.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: July 28, 2020
    Assignee: OSRAM OLED GmbH
    Inventor: Stefan Grötsch
  • Patent number: 10727384
    Abstract: A device with semiconductor chips on a primary carrier is disclosed. In an embodiment a device includes a primary carrier, a plurality of semiconductor chips arranged on the primary carrier, a radiation conversion material arranged at least in places on the semiconductor chips and the primary carrier, a secondary carrier to which the primary carrier is attached and a scattering body arranged on a front side of the secondary carrier facing the primary carrier, the scattering body covering the semiconductor chips, wherein the primary carrier is formed reflective to primary radiation at least in a region of the semiconductor chips, and wherein, during operation of the device, at least secondary radiation exits through a front side of the scattering body facing away from the secondary carrier and through a rear side of the secondary carrier facing away from the primary carrier.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: July 28, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Florian Bösl, Matthias Sabathil
  • Patent number: 10727052
    Abstract: A semiconductor chip is disclosed. In an embodiment a semiconductor chip includes a multiply-connected mask layer comprising openings, the openings completely penetrate the mask layer and a semiconductor layer sequence, which, at least in places, is in direct contact with the mask layer, wherein the semiconductor layer sequence is disposed on the mask layer, wherein the mask layer comprises a light-transmissive material, and wherein the light-transmissive material comprises an optical refractive index for light which is smaller than a refractive index of the semiconductor layer sequence.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: July 28, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Tobias Gotschke, Jürgen Off, Korbinian Perzlmaier
  • Patent number: 10727382
    Abstract: A method of forming one or more three-dimensional objects for an optoelectronic lighting device including a carrier with an optoelectronic semiconductor component includes providing a carrier of an optoelectronic lighting device, wherein an optoelectronic semiconductor component is arranged on the carrier, and a construction region partly delimited by the carrier is defined, the optoelectronic semiconductor component facing the construction region, introducing a polymerizable liquid into the construction region, and exposing the construction region to form one or more solid polymers from the polymerizable liquid in a curing zone included by the construction region, and one or more three-dimensional objects from the one or more solid polymers in the curing zone, wherein an ineffective region is formed during the process of exposing the construction region, polymerization being inhibited in the ineffective region, and the curing zone is arranged between the carrier and the ineffective region.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: July 28, 2020
    Assignee: OSRAM OLED GmbH
    Inventor: Nikolaus Gmeinwieser
  • Patent number: 10727645
    Abstract: A semiconductor light source is disclosed. In one embodiment, a semiconductor light source includes at least one semiconductor laser for generating a primary radiation and at least one conversion element for generating a longer-wave visible secondary radiation from the primary radiation, wherein the conversion element for generating the secondary radiation comprises a semiconductor layer sequence having one or more quantum well layers, and wherein, in operation, the primary radiation is irradiated into the semiconductor layer sequence perpendicular to a growth direction thereof, with a tolerance of at most 15°.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 28, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Bernhard Stojetz, Alfred Lell, Christoph Eichler, Andreas Löffler
  • Patent number: 10720549
    Abstract: In an embodiment a semiconductor layer sequence includes a pre-barrier layer including AlGaN, a pre-quantum well including InGaN having a first band gap, a multi-quantum well structure including a plurality of alternating main quantum wells of InGaN having a second band gap and main barrier layers of AlGaN or AlInGaN, wherein the second band gap is smaller than the first band gap and the main quantum wells are configured to generate a radiation having a wavelength of maximum intensity between 365 nm and 490 nm inclusive, a post-quantum well with a third band gap which is larger than the second band gap, a post-barrier layer including AlGaN or AlInGaN and an electron-blocking layer including AlGaN.
    Type: Grant
    Filed: September 4, 2017
    Date of Patent: July 21, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Werner Bergbauer, Joachim Hertkorn
  • Patent number: 10711192
    Abstract: A lighting device is specified. The lighting device comprises a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: July 14, 2020
    Assignee: Osram Oled GmbH
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Patent number: 10714901
    Abstract: In an embodiment a laser include a semiconductor layer sequence having an active zone for generating radiation and an electrical contact web arranged on a top side of the semiconductor layer sequence, wherein the contact web is located on the top side only in an electrical contact region or is in electrical contact with the top side only in the contact region so that the active zone is supplied with current only in places during operation, wherein the contact web comprises a plurality of metal layers at least partially stacked one above the other, wherein at least one of the metal layers comprises a structuring so that the at least one metal layer only partially covers the contact region and has at least one opening or interruption, and wherein the structuring reduces stresses of the semiconductor layer sequence on account of different thermal expansion coefficients of the metal layers.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: July 14, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Bernhard Stojetz, Georg Brüderl
  • Patent number: 10693088
    Abstract: In various embodiments, a method for producing an optoelectronic device is provided. The method may include in the following order: providing a substrate, having a first state having a non-planar shape, reshaping the substrate into a second state. The second state has a planar or substantially planar shape. The method may further include forming at least one optoelectronic component on the substrate and reshaping the substrate into a third state. The third state is identical or substantially identical to the first state.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: June 23, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Sebastian Wittmann, Arne Fleissner, Erwin Lang, Nina Riegel
  • Patent number: 10693033
    Abstract: A semiconductor chip (100) is provided, having a first semiconductor layer (1), which has a lateral variation of a material composition along at least one direction of extent. Additionally provided is a method for producing a semiconductor chip (100).
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: June 23, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Alfred Lell, Andreas Löffler, Christoph Eichler, Bernhard Stojetz, André Somers
  • Patent number: 10686099
    Abstract: An optoelectronic device (50) comprising a semiconductor body (10a, 10b, 10c) having an optically active region (12), a carrier (60), and a pair of connection layers (30a, 30b, 30c) having a first connection layer (32) and a second connection layer (34), wherein: the semiconductor body is disposed on the carrier, the first connection layer is disposed between the semiconductor body and the carrier and is connected to the semiconductor body, the second connection layer is disposed between the first connection layer and the carrier, at least one layer selected from the first connection layer and the second connection layer contains a radiation-permeable and electrically conductive oxide, and the first connection layer and the second connection layer are directly connected to each other at least in regions in one or more bonding regions, so that the pair of connection layers is involved in the mechanical connection of the semiconductor body to the carrier. A production process is also specified.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: June 16, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Sophia Huppmann, Simeon Katz, Marcus Zenger
  • Patent number: 10686296
    Abstract: An optoelectronic component includes a layer structure including an active zone that generates electromagnetic radiation, wherein the active zone is arranged in a plane, the layer structure includes a top side and four side faces, the first and third side faces are arranged opposite one another, the second and fourth side faces are arranged opposite one another, a strip-type ridge structure is arranged on the top side of the layer structure, the ridge structure extends between the first side face and the third side face, the first side face constitutes an emission face for electromagnetic radiation, a first recess is introduced into the top side of the layer structure laterally alongside the ridge structure, a second recess is introduced into the first recess, and the second recess extends as far as the second side face.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: June 16, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Sven Gerhard, Alfred Lell, Clemens Vierheilig, Andreas Löffler
  • Patent number: 10686104
    Abstract: The invention relates to a method for producing a plurality of optoelectronic semiconductor components, comprising the following steps: preparing a plurality of semiconductor chips spaced in a lateral direction to one another; forming a housing body assembly, at least one region of which is arranged between the semiconductor chips; forming a plurality of fillets, each adjoining a semiconductor chip and being bordered in a lateral direction by a side surface of each semiconductor chip and the housing body assembly; and separating the housing body assembly into a plurality of optoelectronic components, each component having at least one semiconductor chip and a portion of the housing body assembly as a housing body, and each semiconductor chip not being covered by material of the housing body on a radiation emission surface of the semiconductor component, which surface is located opposite a mounting surface. The invention also relates to a semiconductor component.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 16, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Markus Pindl, Thomas Schwarz, Frank Singer, Sandra Sobczyk
  • Publication number: 20200185624
    Abstract: An organic electronic device having a charge carrier generation layer is disclosed. In an embodiment an organic electronic device includes a first organic functional layer stack, a second organic functional layer stack and a charge carrier generation layer arranged therebetween, the charge carrier generation layer including an n-conducting region, an organic p-doped region and an intermediate region arranged therebetween, wherein the organic p-doped region has as a p-type dopant a fluorinated sulfonimide metal salt.
    Type: Application
    Filed: April 11, 2017
    Publication date: June 11, 2020
    Applicants: OSRAM OLED GmbH, OSRAM OLED GmbH
    Inventors: Dominik Pentlehner, Niels Gerlitzki, Florian Kessler, Anna Maltenberger, Günter Schmid, Sabine Szyszkowski, Dimitrios Zevgitis
  • Patent number: 10680135
    Abstract: The invention relates to an optoelectronic component (100) comprising a semiconductor layer sequence (1) having an active layer (10), wherein the active layer (10) is designed to produce or absorb electromagnetic radiation in intended operation. Furthermore, the component (100) comprises a first contact structure (11) and a second structure (12), by means of which the semiconductor layer sequence (1) can be electrically contacted in intended operation. In operation, a voltage is applied to the contact structures (11, 12), wherein an operation-related voltage difference ?Ubet between the contact structures (11, 12) arises. When the voltage difference is increased, a first arc-over occurs in or on the component (100) between the two contact structures (11, 12). A spark gap (3) between the contact structures (11, 12), which arises in the event of the first arc-over, passes predominantly through a surrounding medium in the form of gas or vacuum and/or through a potting.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: June 9, 2020
    Assignee: OSRAM OLED GMBH
    Inventors: Berthold Hahn, Korbinian Perzlmaier, Christian Leirer, Anna Kasprzak-Zablocka
  • Patent number: 10680147
    Abstract: A method of producing a lighting device includes a radiation-emitting optoelectronic component, including: arranging the component on a carrier, applying a first layer on the carrier, wherein the first layer surrounds the component at least laterally in the form of a circumferential frame, and subsequently applying a second layer on the first layer laterally next to the frame, wherein the second layer includes a greater hardness than the first layer.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: June 9, 2020
    Assignee: OSRAM Oled GmbH
    Inventors: Peter Nagel, Klaus Reingruber
  • Patent number: 10677760
    Abstract: Method for ultrasound microscopic measuring of semiconductor samples, computer program for ultrasound microscopic measuring of semiconductor samples, computer program product and ultrasound microscope. Inter alia, a method for the ultrasound microscopic measurement of semiconductor samples is provided, in which the time distances (?t) between signals are compared with comparative time distances, which are determined by a known thickness of a layer of the sample.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: June 9, 2020
    Assignee: OSRAM OLED GMBH
    Inventor: Helmut Appel