Patents Assigned to OSRAM OLED GmbH
  • Publication number: 20230068945
    Abstract: In one embodiment the semiconductor laser comprises a carrier and an edge-emitting laser diode which is mounted on the carrier and which comprises an active zone for generating a laser radiation and a facet with a radiation exit region. The semiconductor laser further comprises a protective cover, preferably a lens for collimation of the laser radiation. The protective cover is fastened to the facet and to a side surface of the carrier by means of an adhesive. A mean distance between a light entrance side of the protective cover and the facet is at most 60 ?m. The semiconductor laser is configured to be operated in a normal atmosphere without additional gas-tight encapsulation.
    Type: Application
    Filed: October 21, 2022
    Publication date: March 2, 2023
    Applicant: OSRAM OLED GmbH
    Inventors: Jörg Erich SORG, Harald KÖNIG, Alfred LELL, Florian PESKOLLER, Karsten AUEN, Roland SCHULZ, Herbert BRUNNER, Frank SINGER, Roland HÜTTINGER
  • Publication number: 20230054120
    Abstract: An optoelectronic arrangement is specified, including a moulded body having a base surface, a first pixel group with a multiplicity of pixels assigned thereto, each having a first semiconductor region, a second semiconductor region and an active region, a multiplicity of separating structures arranged between the pixels, and at least one first contact structure having a first contact plane and a first contact location, which is freely accessible at the base surface, wherein the pixels of the first pixel group are arranged alongside one another at the top surface, the first semiconductor regions and/or the second semiconductor regions of adjacent pixels of the first pixel group are electrically insulated from one another by means of the separating structures, a first contact structure is assigned one-to-one to the first pixel group, and the first semiconductor regions of the pixels of the first pixel group are electrically conductively connected to one another by means of the first contact plane and are electr
    Type: Application
    Filed: October 25, 2022
    Publication date: February 23, 2023
    Applicant: OSRAM OLED GmbH
    Inventors: Christian LEIRER, Korbinian PERZLMAIER
  • Patent number: 11588088
    Abstract: An optoelectronic component includes a radiation side, a contact side opposite the radiation side having at least two electrically conductive contact elements, and a semiconductor layer sequence having an active layer that emits or absorbs the electromagnetic radiation, wherein the at least two electrically conductive contact elements have different polarities, are spaced apart from each other and are completely or partially exposed at the contact side in an unmounted state of the optoelectronic component, a region of the contact side is partially or completely covered with an electrically insulating, contiguously formed cooling element, the cooling element is in direct contact with the contact side and has a thermal conductivity of at least 30 W/(m·K), and in a plan view of the contact side, the cooling element partially covers one or both of the at least two electrically conductive contact elements.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: February 21, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Luca Haiberger, David Racz, Matthias Sperl
  • Patent number: 11581702
    Abstract: A semiconductor laser diode is disclosed. In an embodiment a semiconductor laser diode includes a first resonator and a second resonator, the first and second resonators having parallel resonator directions along a longitudinal direction and being monolithically integrated into the semiconductor laser diode, wherein the first resonator includes at least a part of a semiconductor layer sequence having an active layer and an active region configured to be electrically pumped to generate a first light, wherein the longitudinal direction is parallel to a main extension plane of the active layer, and wherein the second resonator has an active region with a laser-active material configured to be optically pumped by at least a part of the first light to produce a second light which is partially emitted outwards from the second resonator.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: February 14, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Bernhard Stojetz, Christoph Eichler, Alfred Lell, Sven Gerhard
  • Patent number: 11581707
    Abstract: A method of producing a laser diode bar includes producing a plurality of emitters arranged side by side, emitters each including a semiconductor layer sequence having an active layer that generates laser radiation, a p-contact on a first main surface of the laser diode bar and an n-contact on a second main surface of the laser diode bar opposite the first main surface, testing at least one optical and/or electrical property of the emitters, wherein emitters in which the optical and/or electrical property lies within a predetermined setpoint range are assigned to a group of first emitters, and emitters in which the at least one optical and/or electrical property lies outside the predetermined setpoint range are assigned to a group of second emitters, and electrically contacting first emitters, wherein second emitters are not electrically contacted so that they are not supplied with current during operation of the laser diode bar.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: February 14, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Clemens Vierheilig, Andreas Löffler, Sven Gerhard
  • Patent number: 11574952
    Abstract: An optoelectronic semiconductor component and a method for producing optoelectronic semiconductor components are disclosed. In an embodiment a optoelectronic semiconductor component includes a plurality of semiconductor pillars, each pillar having a tip and a base region at opposite ends, an electrical isolation layer surrounding at least part of the semiconductor pillars on side faces and at least one first electrical contact pad and at least one second electrical contact pad for energizing the semiconductor pillars, wherein a first portion of the semiconductor pillars are emitter pillars configured to generate radiation, wherein a second portion of the semiconductor pillars are non-radiating electrical contact pillars, wherein the contact pillars extend through the isolation layer such that all contact pads are located on the same side of the isolation layer, and wherein each contact pillars is coated with an electrically ohmically conductive outer layer.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: February 7, 2023
    Assignee: OSRAM OLED GMBH
    Inventor: Siegfried Herrmann
  • Patent number: 11574823
    Abstract: A heating apparatus, a method and a system for producing semiconductor chips in a wafer assembly are disclosed.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: February 7, 2023
    Assignee: OSRAM OLED GMBH
    Inventor: Hans Lindberg
  • Publication number: 20230031493
    Abstract: The invention relates to a method for producing a plurality of optoelectronic semiconductor components, including the following steps: preparing a plurality of semiconductor chips spaced in a lateral direction to one another; forming a housing body assembly, at least one region of which is arranged between the semiconductor chips; forming a plurality of fillets, each adjoining a semiconductor chip and being bordered in a lateral direction by a side surface of each semiconductor chip and the housing body assembly; and separating the housing body assembly into a plurality of optoelectronic components, each component having at least one semiconductor chip and a portion of the housing body assembly as a housing body, and each semiconductor chip not being covered by material of the housing body on a radiation emission surface of the semiconductor component, which surface is located opposite a mounting surface. The invention also relates to a semiconductor component.
    Type: Application
    Filed: October 5, 2022
    Publication date: February 2, 2023
    Applicant: OSRAM OLED GmbH
    Inventors: Markus PINDL, Thomas SCHWARZ, Frank SINGER, Sandra SOBCZYK
  • Patent number: 11569635
    Abstract: A radiation-emitting semiconductor component is disclosed. In an embodiment, a component includes a semiconductor layer sequence and a carrier on which the semiconductor layer sequence is arranged, wherein the semiconductor layer sequence comprises an active region configured for generating radiation, an n-conducting mirror region and a p-conducting mirror region, wherein the active region is arranged between the n-conducting mirror region and the p-conducting mirror region, and wherein the p-conducting mirror region is arranged closer to the carrier than the active region.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 31, 2023
    Assignee: OSRAM OLED GMBH
    Inventor: Petrus Sundgren
  • Patent number: 11569479
    Abstract: A multilayer encapsulation, a method for encapsulating and an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes a first electrode layer, an organic light-emitting layer stack abutting the first electrode layer, a second electrode layer abutting the light-emitting layer stack and a multilayer encapsulation abutting the second electrode layer, wherein the multilayer encapsulation comprises a barrier layer and a planarization layer, wherein the planarization layer abuts the second electrode layer, and wherein the planarization layer is arranged between the second electrode layer and the barrier layer.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: January 31, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Sebastian Wittmann, Arne Fleissner, Erwin Lang
  • Patent number: 11567565
    Abstract: A sensor and a 3-D position detection system are disclosed. In an embodiment a sensor includes at least one sensor chip configured to detect radiation, at least one carrier on which the sensor chip is mounted and a cast body that is transmissive for the radiation and that completely covers the sensor chip, wherein a centroid shift of the sensor chip amounts to at most 0.04 mrad at an angle of incidence of up to at least 60°, wherein the cast body comprises a light inlet side that faces away from the sensor chip, and the light inlet side comprises side walls bounding it on all sides, wherein the side walls are smooth, planar and transmissive for the radiation, wherein a free field-of-view on the light inlet side has an aperture angle of at least 140°, and wherein the cast body protrudes in a direction away from the sensor chip beyond a bond wire.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: January 31, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Daniel Dietze, Maximilian Assig, Claus Jaeger
  • Patent number: 11566174
    Abstract: A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC=N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; 3.5?u?4; 3.5?v?4; (?0.2)?w?0.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: January 31, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Biehler, Simon Peschke
  • Patent number: 11563154
    Abstract: An optoelectronic component is disclosed. In an embodiment an optoelectronic component includes a semiconductor chip configured to emit radiation and a conversion element including quantum dots, the conversion element configured to convert a wavelength of the radiation, wherein each quantum dot includes a wavelength-converting core and an inorganic encapsulation, wherein inorganic encapsulations form a matrix material of at least adjacent quantum dots, and wherein the adjacent quantum dots have a distance of at least 10 nm.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: January 24, 2023
    Assignee: OSRAM OLED GMBH
    Inventor: David O'Brien
  • Patent number: 11557698
    Abstract: Disclosed is a conversion element (1) comprising an active region (13) that is formed by a semiconductor material and includes a plurality of barriers (131) and quantum troughs (132), a plurality of first structural elements (14) on a top face (la) of the conversion element (1), and a plurality of second structural elements (15) and/or third structural elements (16) which are arranged on a face of the active region (13) facing away from the plurality of first structural elements (14). Also disclosed is a method for producing a conversion element of said type.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: January 17, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Andreas Loeffler, Adam Bauer, Matthias Peter, Michael Binder
  • Patent number: 11557691
    Abstract: In an embodiment a method includes forming a semiconductor layer sequence on a growth substrate, applying a silicon oxide layer to a surface of the semiconductor layer sequence facing away from the growth substrate, applying a first metal layer to the silicon oxide layer, wherein the first metal layer includes gold, platinum, copper or silver, providing a silicon substrate and applying a second metal layer formed of the same material as the first metal layer to the silicon substrate, bonding the semiconductor layer sequence to the silicon substrate by direct bonding of the first metal layer to the second metal layer, wherein the first metal layer and the second metal layer are brought into contact at a temperature in a range of 150° C. to 400° C. so that they form a metal bonding layer and detaching the growth substrate from the semiconductor layer sequence.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: January 17, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Simeon Katz, Sophia Huppmann
  • Patent number: 11557700
    Abstract: An optoelectronic semiconductor component includes a primary light source including a carrier and a semiconductor layer sequence mounted thereon and configured to generate primary light, and at least one conversion unit of at least one semiconductor material adapted to convert the primary light into at least one secondary light, wherein the semiconductor layer sequence and the converter unit are separate elements, the semiconductor layer sequence includes a plurality of pixels, the pixels are configured to be controlled electrically independently of each other, the carrier includes a plurality of control units configured to drive the pixels, all pixels of a first group are free of a conversion unit and are configured to emit the primary light, all pixels of a second group of pixels include exactly one conversion unit each and are configured to emit the at least one secondary light.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: January 17, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Isabel Otto, Alexander F. Pfeuffer, Britta Göötz, Norwin von Malm
  • Patent number: 11552449
    Abstract: A semiconductor radiation source includes at least one semiconductor chip that generates radiation; and at least one capacitor body, wherein the semiconductor chip and the capacitor body are stacked on top of each other, the semiconductor chip directly electrically connects in a planar manner to the capacitor body, the semiconductor chip is a ridge waveguide laser, and a ridge waveguide of the semiconductor chip is arranged on a side of the semiconductor chip facing away from the capacitor body.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: January 10, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Andreas Fröhlich, Hubert Halbritter, Josip Maric
  • Patent number: 11543113
    Abstract: An arrangement that illuminates and records a moving scene, including a light source that illuminates the moving scene, a control device that operates the light source, and a camera that records the moving scene, wherein the light source includes a plurality of pixels, each of which is configured to illuminate an area of the moving scene, the control device is configured to operate the pixels, and the light source includes at least one semiconductor component including at least one semiconductor chip containing two or more of the plurality of pixels.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: January 3, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Marco Antretter, Mikko Perälä, Désirée Queren
  • Patent number: 11542431
    Abstract: A phosphor combination may include a first phosphor and a second phosphor. The second phosphor may be a red-emitting quantum dot phosphor. The phosphor combination may optionally include a third phosphor that is a red-emitting phosphor with the formula (MB) (TA)3-2x(TC)1+2xO4-4xN4x:E. A conversion element may include the phosphor combination. An optoelectronic device may include the phosphor combination and a radiation-emitting semiconductor chip.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: January 3, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Rainer Butendeich, Philipp Pust, David O'Brien, Ion Stoll, Marcus Adam
  • Patent number: 11545369
    Abstract: An electronic component includes a lead frame; a semiconductor chip arranged above the lead frame; and a connection layer sequence arranged between the lead frame and the semiconductor chip, wherein the connection layer sequence includes a first intermetallic layer including gold and indium or gold, indium and tin, a second intermetallic layer including indium and a titanium compound, indium and nickel, indium and platinum or indium and titanium, and a third intermetallic layer including indium and gold.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: January 3, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Mathias Wendt, Andreas Weimar