Patents Assigned to OSRAM Opto Semiconductors GmbH
  • Patent number: 10566501
    Abstract: A method for producing an optoelectronic semiconductor device and an optoelectronic semiconductor device are disclosed. In an embodiment the method includes providing a semiconductor layer sequence including a light-emitting and/or light-absorbing active zone and a top face downstream of the active zone in a stack direction extending perpendicular to a main plane of extension of the semiconductor layer sequence, applying a layer stack onto the top face, wherein the layer stack includes an oxide layer containing indium, and an intermediate face downstream of the top face in the stack direction and applying a contact layer onto the intermediate face, wherein the contact layer includes indium tin oxide, and wherein the layer stack is, within the bounds of manufacturing tolerances, free of tin.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: February 18, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Simeon Katz, Kai Gehrke, Massimo Drago, Joachim Hertkorn
  • Patent number: 10566496
    Abstract: An optoelectronic semiconductor chip (10) is specified, comprising a p-type semiconductor region (4), an n-type semiconductor region (6), and an active layer arranged between the p-type semiconductor region (4) and the n-type semiconductor region (6), said active layer being designed as a multiple quantum well structure (5), wherein the multiple quantum well structure (5) comprises quantum well layers (53) and barrier layers (51), wherein the barrier layers (51) are doped, and wherein undoped intermediate layers (52, 54) are arranged between the quantum well layers (53) and the barrier layers (51). Furthermore, a method for producing the optoelectronic semiconductor chip (10) is specified.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: February 18, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Andreas Rudolph
  • Patent number: 10564470
    Abstract: In various embodiments, a backlighting device is provided. The backlighting device may include a plurality of semiconductor light sources arranged in a plane and serving for generating light radiation, and a side wall arranged laterally with respect to the semiconductor light sources, where the side wall is inclined with respect to the plane predefined by the semiconductor light sources, and wherein the side wall is retroreflective at a side which can be irradiated with light radiation of the semiconductor light sources.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: February 18, 2020
    Assignee: OSRAM OPTO Semiconductors GmbH
    Inventors: Felix Kimme, Christopher Koelper, Peter Brick
  • Patent number: 10566500
    Abstract: An optoelectronic semiconductor component has a semiconductor body, wherein the semiconductor body includes a semiconductor layer sequence having a first semiconductor layer, a second semiconductor layer and an active region that generates or receives radiation disposed between the first semiconductor layer and the second semiconductor layer; the semiconductor body has a functional region in which the first semiconductor layer electrically conductively connects to a first terminal layer and the second semiconductor layer electrically conductively connects to a second terminal layer; an isolating layer is arranged on a side of the first terminal layer facing away from the semiconductor body; an interruption is formed in the isolating layer which at least locally delimits an inner subregion of the isolating layer in a lateral direction; the interruption encloses the functional region in the lateral direction; and in a plan view of the semiconductor component, the interruption overlaps with the active region.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: February 18, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Alexander F. Pfeuffer
  • Patent number: 10566210
    Abstract: The invention relates to a method for structuring a nitride layer (2), comprising the following steps: A) providing a nitride layer (2) formed with silicon nitride of a first type, B) defining regions (40) of said nitride layer (2) to be transformed, and C) inserting the nitride layer (2) into a transformation chamber for the duration of a transformation period, said transformation period being selected such that—at least 80% of the nitride layer (2) regions (40) to be transformed are transformed into oxide regions (41) formed with silicon oxide, and—remaining nitride layer (2) regions (21) remain at least 80% untransformed.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: February 18, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Andreas Rueckerl, Roland Zeisel, Simeon Katz
  • Patent number: 10559556
    Abstract: An optoelectronic semiconductor component is disclosed, comprising: a semiconductor body (1) having a semiconductor layer sequence (2) with a p-type semiconductor region (3), an n-type semiconductor region (5), and an active layer (4) arranged between the p-type semiconductor region (3) and the n-type semiconductor region (5); a support (10) having a plastic material and a first via (11) and a second via (12); a p-contact layer (7) and an n-contact layer (8), at least some regions of which are arranged between the support (10) and the semiconductor body (1), wherein the p-contact layer (7) connects the first via (11) to the p-type semiconductor region (3) and the n-contact layer (8, 8A) connects the second via (12) to the n-type semiconductor region (5); and an ESD protection element (15) which is arranged between the support (10) and the semiconductor body (1), wherein the ESD protection element (15) is electrically conductively connected to the first via (11) and to the second via (12), and wherein a forwar
    Type: Grant
    Filed: July 4, 2016
    Date of Patent: February 11, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Christian Leirer, Korbinian Perzlmaier
  • Patent number: 10553748
    Abstract: A semiconductor component and an illumination device is disclosed. In an embodiment the semiconductor component includes a semiconductor chip configured to generate a primary radiation having a first peak wavelength and a radiation conversion element arranged on the semiconductor chip. The radiation conversion element includes a quantum structure that converts the primary radiation at least partly into secondary radiation having a second peak wavelength and a substrate that is transmissive to the primary radiation.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: February 4, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Adam Bauer, Wolfgang Mönch, David Racz, Michael Wittmann, Dominik Schulten, Andreas Löffler
  • Patent number: 10553148
    Abstract: A module for a video wall includes a first light emitting chip of an image pixel connecting to a first power line by a first electrical terminal, the first light emitting chip connects to a third power line by a second electrical terminal, a second light emitting chip of the image pixel connects to a second power line by the first electrical terminal, the second light emitting chip of the image pixel connects to a fourth power line by the second electrical terminal, the first and/or the second power line are/is a surface metallization, including contact sections, a light emitting chip is arranged on a contact section, at least between contact sections of a first and of a second power line an insulation layer is provided on a carrier, the insulation layer includes openings above the contact sections, and the light emitting chips are arranged in the openings.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: February 4, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Alexander Martin, Thomas Schwarz, Frank Singer, Andreas Plössl
  • Patent number: 10553746
    Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment the optoelectronic component includes a layer structure having an active zone for producing electromagnetic radiation, wherein the active zone is arranged in a first plane, wherein a recess is introduced into the surface of the layer structure, wherein the recess adjoins an end surface of the component, wherein the end surface is arranged in a second plane, wherein the second plane is arranged substantially perpendicularly to the first plane, wherein the recess has a bottom surface and a lateral surface wherein the lateral surface is arranged substantially perpendicularly to the end surface, wherein the lateral surface is arranged tilted at an angle not equal to 90° to the first plane of the active zone, and wherein the bottom surface is arranged in the region of the first plane of the active zone.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: February 4, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Alfred Lell, Sven Gerhard
  • Patent number: 10553755
    Abstract: The invention relates, inter alia, to a method for producing a plurality of semiconductor chips, the method comprising the following steps: providing a substrate (1); applying a semiconductor layer sequence (2) to the substrate (1); generating a plurality of recesses (6) in the semiconductor layer sequence (2) on the side of the semiconductor layer sequence (2) that is facing away from the substrate (1); detaching the substrate (1) from the semiconductor layer sequence (2); thinning the semiconductor layer sequence (2) on the side that was facing the substrate (1) prior to detaching the substrate (1).
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: February 4, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Lutz Hoeppel, Attila Molnar
  • Patent number: 10554019
    Abstract: In one embodiment of the invention, the semiconductor laser (1) comprises a semiconductor layer sequence (2). The semiconductor layer sequence (2) contains an n-type region (23), a p-type region (21) and an active zone (22) lying between the two. A laser beam is produced in a resonator path (3). The resonator path (3) is aligned parallel to the active zone (22). In addition, the semiconductor laser (1) contains an electrical p-contact (41) and an electrical n-contact (43) each of which is located on the associated region (21, 23) of the semiconductor layer sequence (2) and is configured to input current directly into the associated region (21, 23). The n-contact (43) extends from the p-type region (21) through the active zone (22) and into the n-type region (23) and is located, when viewed from above, next to the resonator path (3).
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: February 4, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Frank Singer, Norwin Von Malm, Tilman Ruegheimer, Thomas Kippes
  • Patent number: 10544313
    Abstract: A method of increasing photo-luminescent quantum yield (PLQY) of QDs to be used as down-converters placed directly on an LED chip includes synthesizing a plurality of quantum dots, applying energy to the plurality of quantum dots to increase PLQY of the plurality of quantum dots, dispensing the plurality of quantum dots onto the LED chip, and curing the LED chip.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: January 28, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Nathan Mclaughlin, Kari N. Haley, Morgan Vonnahme, Brian Theobald, Norbert Puetz
  • Patent number: 10546987
    Abstract: A method for producing a component may include providing a composite containing a semiconductor stack layer, a first exposed connection layer and a second exposed connection layer, where the connection layers are arranged on the semiconductor stack, assigned to different electrical polarities and are configured to electrically contact the component to be produced; forming a first through contact exposed in lateral directions on the first connection layer and a second through contact exposed in lateral directions on the second connection layer, where the through contacts are formed from an electrically conductive connection material; and applying a molded body material on the composite for forming a molded body, where each of the through contacts are fully and circumferentially enclosed by the molded body at least in the lateral directions, such that the molded body and the through contacts form a permanently continuous carrier which mechanically carries the component to be produced.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: January 28, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Juergen Moosburger, Lutz Hoeppel
  • Patent number: 10541267
    Abstract: A light-emitting assembly is provided in different embodiments. The light-emitting assembly comprises: a substrate (22); first light-emitting components (31) arranged on the substrate (22) along a first line and emitting first light of a first colour; second light-emitting components (33) arranged on the substrate (22) along a second line and emitting second light of a second colour, wherein the first line runs laterally next to the second line; and multiple optical waveguides (44) for guiding the light, which are arranged over the light-emitting components (31, 33), extend in the direction from the first line to the second line, and cross the first line and the second line.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: January 21, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventor: Farhang Ghasemi Afshar
  • Patent number: 10535806
    Abstract: A component includes a carrier having a front side facing towards a semiconductor body and a rear side facing away from the semiconductor body, each of which is formed at least in places by a surface of a shaped body, a metal layer contains a first sub-region and a second sub-region, wherein the first sub-region and the second sub-region adjoin the shaped body in a lateral direction, are electrically connectable in a vertical direction on the front side of the carrier, are assigned to different electrical polarities of the component and are thus configured to electrically contact the semiconductor body, and the carrier has a side face running perpendicularly or obliquely to the rear side of the carrier and is configured as a mounting surface of the component, wherein at least one of the sub-regions is electrically connectable via the side face and exhibits singulation traces.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: January 14, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Christian Leirer, Korbinian Perzlmaier, Anna Kasprzak-Zablocka, Berthold Hahn, Thomas Schwarz
  • Patent number: 10535515
    Abstract: A method of producing an optoelectronic semiconductor chip includes in order: A) creating a nucleation layer on a growth substrate, B) applying a mask layer on to the nucleation layer, C) growing a coalescence layer, wherein the coalescence layer is grown starting from regions of the nucleation layer not covered by mask islands having a first main growth direction perpendicular to the nucleation layer so that ribs are formed, D) further growing the coalescence layer with a second main growth direction parallel to the nucleation layer to form a contiguous and continuous layer, E) growing a multiple quantum well structure on the coalescence layer, F) applying a mirror having metallic contact regions that impress current into the multiple quantum well structure and mirror islands for the total reflection of radiation generated in the multiple quantum well structure, and G) detaching the growth substrate and creating a roughening by etching.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: January 14, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Joachim Hertkorn
  • Publication number: 20200006594
    Abstract: A semiconductor body is disclosed. In an embodiment a semiconductor body includes a p-doped region, an active region, an intermediate layer and a layer stack containing indium, wherein an indium concentration in the layer stack changes along a stacking direction, wherein the layer stack is formed with exactly one nitride compound semiconductor material apart from dopants, wherein the intermediate layer is nominally free of indium, arranged between the layer stack and the active region, and directly adjoins the layer stack, wherein the intermediate layer and/or the layer stack are n-doped at least in places, wherein a dopant concentration of the layer stack is at least 5*1017 1/cm3 and at most 2*1018 1/cm3, and wherein a dopant concentration of the intermediate layer is at least 2*1018 1/cm3 and at most 3*1019 1/cm3.
    Type: Application
    Filed: February 28, 2018
    Publication date: January 2, 2020
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Joachim Hertkorn, Marcus Eichfelder
  • Patent number: 10522699
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment a chip includes an active zone with a multi-quantum-well structure, wherein the multi-quantum-well structure includes multiple quantum-well layers and multiple barrier layers, which are arranged sequentially in an alternating manner along a growth direction and which each extend continuously over the entire multi-quantum-well structure, wherein seen in a cross-section parallel to the growth direction, the multi-quantum-well structure has at least one emission region and multiple transport regions, wherein the quantum-well layers and the barrier layers are thinner in the transport regions than in the emission region, wherein, along the growth direction, the transport regions have a constant width, and wherein the quantum-well layers and the barrier layers are oriented parallel to one another in the emission region and in the transport regions.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: December 31, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Asako Hirai, Tobias Meyer, Philipp Drechsel, Peter Strauß, Anna Nirschl, Alvaro Gomez-Iglesias, Tobias Niebling, Bastian Galler
  • Patent number: 10519371
    Abstract: A luminescent material may include the formula (MB) (TA)3?2x(TC)1+2xO4?4xN4x:E where 0<x<0.875. —TA may be selected from a group of monovalent metals, such as Li, Na, Cu, Ag, and combinations thereof. —MB may be selected from a group of divalent metals including Mg, Ca, Sr, Ba, Zn, and combinations thereof. —TC may be selected from a group of trivalent metals including B, Al, Ga, In, Y, Fe, Cr, Sc, rare earth metals, and combinations thereof. —E may be selected from a group including Eu, Mn, Ce, Yb, and combinations thereof.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: December 31, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Markus Seibald, Dominik Baumann, Thorsten Schroeder, Stefan Lange, Gregor Hoerder, Gina Maya Achrainer, Hubert Huppertz, Simon Peschke, Alexey Marchuk, Philipp Schmid, Franziska Hummel, Stephanie Dirksmeyer
  • Patent number: 10520164
    Abstract: A device for converting the wavelength of electromagnetic radiation is disclosed. In an embodiment the device includes a carrier, a conversion layer configured to at least partly convert a wavelength of the electromagnetic radiation and an intermediate layer, wherein the conversion layer is connected to the carrier via the intermediate layer, and wherein the intermediate layer, at least in partial regions, includes a solid layer and a connection layer.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: December 31, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: I-Hsin Lin-Lefebvre, Reinhard Streitel, Michael Schmal, Urs Heine, Eric Lefebvre, Markus Keidler