Patents Assigned to OSRAM Opto Semiconductors GmbH
  • Patent number: 10485465
    Abstract: A pulse oximetry device includes a light emission device configured to emit light with a wavelength in a first wavelength interval and light with a wavelength in a second wavelength interval, a first light detector configured to detect light with a wavelength in the first wavelength interval, but not to respond to light with a wavelength in the second wavelength interval, and a second light detector configured to detect light with a wavelength in the first wavelength interval and detect light with a wavelength in the second wavelength interval, wherein the first light detector has a first light reception surface, the second light detector has a second light reception surface, and the first light reception surface and the second light reception surface are arranged in a common plane and are interleaved with one another.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: November 26, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hubert Halbritter, Michael Klein, David O'Brien
  • Patent number: 10490695
    Abstract: The invention relates to an optoelectronic semiconductor element (100) comprising a semiconductor layer sequence (1) with a first layer (10) of a first conductivity type, a second layer (12) of a second conductivity type, and an active layer (11) which is arranged between the first layer (10) and the second layer (12) and which absorbs or emits electromagnetic radiation when operated as intended. The semiconductor element (100) is equipped with a plurality of injection regions (2) which are arranged adjacently to one another in a lateral direction, wherein the semiconductor layer sequence (1) is doped within each injection region (2) such that the semiconductor layer sequence (1) has the same conductivity type as the first layer (10) within the entire injection region (2). Each injection region (2) passes at least partly through the active layer (11) starting from the first layer (10).
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 26, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Alvaro Gomez-Iglesias, Asako Hirai
  • Patent number: 10490698
    Abstract: An optoelectronic semiconductor chip includes a semiconductor layer sequence and a carrier substrate, wherein the semiconductor layer sequence includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type and an active layer arranged between the first semiconductor region and the second semiconductor region, wherein the first semiconductor region faces the carrier substrate, the semiconductor layer sequence includes first recesses formed in the first semiconductor region and that do not separate the active layer, the semiconductor layer sequence includes second recesses that at least partially separate the first semiconductor region and the active layer, and the second recesses adjoin a first recess or are arranged between two first recesses.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: November 26, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Christoph Klemp
  • Patent number: 10490707
    Abstract: A method of producing optoelectronic components includes A) providing a carrier and optoelectronic semiconductor chips including contact elements arranged on a contact side of the semiconductor chip; B) applying the semiconductor chips laterally next to one another on to the carrier, wherein the contact sides face the carrier during application; C) applying an electrically-conductive layer at least on to subregions of the sides of the semiconductor chip not covered by the carrier; D) applying a protective layer at least on to subregions of side surfaces of the semiconductor chips running transversely to the contact surface; E) electrophoretically depositing a converter layer on to the electrically-conductive layer, wherein the converter layer is configured to convert at least part of radiation emitted by the semiconductor chip into radiation of a different wavelength range; and F) removing the electrically-conductive layer from regions between the converter layer and the semiconductor chips.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: November 26, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Siegfried Herrmann
  • Patent number: 10488579
    Abstract: An optoelectronic arrangement and a lighting device are disclosed. In an embodiment the arrangement includes a semiconductor chip for generating radiation and a radiation conversion element located downstream of the semiconductor chip with respect to a radiation direction, wherein the radiation conversion element includes a plurality of conversion bodies each with a longitudinal extension axis, and wherein a spatial orientation of the longitudinal extension axes has a preferred direction.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: November 26, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Britta Goeoetz, Norwin von Malm, Dominik Schulten
  • Patent number: 10480748
    Abstract: A lens includes a base body having a light incidence face through which light can enter the base body and a light exit face, through which light which has entered the base body can emerge, the light exit face includes a microlens structure having a plurality of microlenses, the light incidence face has at least two collimator segments that collimate light and a light entry region formed differently from the collimator segments, the base body has at least two back-reflection regions respectively assigned to one of the two collimator segments, to reflect back light collimated by a corresponding collimator segment, in a direction of the corresponding collimator segment, and the base body is a reflection region to reflect light that has entered through the light incidence region in the direction of the microlens structure so that the reflected light can emerge from the base body through the microlens structure.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: November 19, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Ulrich Streppel
  • Patent number: 10481372
    Abstract: A lens and a flash are disclosed. In an embodiment a lens includes a light entrance side having a plurality of Fresnel elements, a light exit side having a plurality of exit lenses having a second focal length and an optical axis, wherein the Fresnel elements and the exit lenses are optically associated with one another in a one-to-one manner, wherein each Fresnel element has an entrance surface which is convex in shape and which forms an entrance lens having a first focal length, wherein each Fresnel element has a deflection surface arranged directly downstream of the entrance surface, wherein the deflection surface is configured to deflect the light which entered the lens through the entrance surface by total internal reflection towards an associated exit lens, and wherein, with a tolerance, each entrance surface and the associated exit lens are located in the interrelated focal points.
    Type: Grant
    Filed: May 29, 2017
    Date of Patent: November 19, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Simon Schwalenberg
  • Patent number: 10483446
    Abstract: An electronic device includes a carrier and a semiconductor chip, wherein the carrier includes a first dielectric layer and a second dielectric layer, a thermal conductivity of the first dielectric layer exceeds a thermal conductivity of the second dielectric layer, the second dielectric layer is arranged on the first dielectric layer and partially covers the first dielectric layer, the semiconductor chip is arranged on the carrier in a mounting area in which the first dielectric layer is not covered by the second dielectric layer, and the carrier includes a solder terminal for electrical contacting arranged on the second dielectric layer.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: November 19, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Kok Eng Ng, Wui Chai Chew, Choo Kean Lim, Mardiana Khalid
  • Patent number: 10483444
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a carrier including two metal layers, wherein the metal layers are detachable from one another, securing an optoelectronic semiconductor chip on the first metal layer of the carrier, and mechanically detaching the second metal layer from the first metal layer.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: November 19, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Harald Jäger, Jürgen Moosburger, Herbert Brunner
  • Patent number: 10483256
    Abstract: An optoelectronic semiconductor device and an apparatus with an optoelectronic semiconductor device are disclosed. In an embodiment the optoelectronic semiconductor component has an emission region including a semiconductor layer sequence having a first semiconductor layer, a second semiconductor layer, and an active region arranged between the first semiconductor layer and the second semiconductor layer for generating radiation, and a protection diode region. The semiconductor component has a contact for electrically contacting the semiconductor component externally. The contact has a first contact region that is connected to the emission region in an electrically conductive manner. The contact has further a second contact region that is spaced apart from the first contact region and connected to the protection diode region in an electrically conductive manner. The first contact region and the second contact region can be electrically contacted externally by a mutual end of a connecting line.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: November 19, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Juergen Moosburger, Andreas Ploessl
  • Patent number: 10483439
    Abstract: The invention relates to an optoelectronic component (10) comprising —a radiation-emitting semiconductor chip (2), —a conversion element (8) which is suitable for converting at least one part of the radiation (12) emitted by the semiconductor chip (2) into a converted radiation (13), said converted radiation (13) having a longer wavelength than the emitted radiation (12), and —a cover (9) which is permeable at least to the converted radiation (13) and which follows the conversion element (8) in a main emission direction, wherein —the conversion element (8) comprises a quantum dot converter material (7), —the conversion element (8) is arranged on a cover (9) inner face (15) facing the semiconductor chip, and —the cover has silicon (9) or consists of silicon.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: November 19, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hubert Halbritter, Britta Göötz
  • Patent number: 10479936
    Abstract: A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, —E=Eu, Ce, Yb and/or Mn, XC=N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; 3.5?u?4; 3.5?v?4; (?0.2)?w?0.2 and 0?m<0.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: November 19, 2019
    Assignee: OSRAM OPTO-SEMICONDUCTORS GMBH
    Inventors: Markus Seibald, Dominik Baumann, Stefan Lange, Hubert Huppertz, Thorsten Schroeder, Daniel Bichler, Gudrun Plundrich, Simon Peschke, Gregor Hoerder, Gina Maya Achrainer, Klaus Wurst
  • Patent number: 10475959
    Abstract: The invention relates to a method for producing a nitride semiconductor component (100), comprising the steps of: —providing a growth substrate (1) having a growth surface (10) formed from a planar area (11) with a plurality of three-dimensionally shaped surface structures (12) on said planar area (11), —growing a nitride-based semiconductor layer sequence (30) on the growth surface (10), growth beginning selectively on a growth area (13) of said growth substrate, and the growth area (13) being less than 45% of the growth surface (10). The invention also relates to a nitride semiconductor component (100) which can be produced according to said method.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Tobias Gotschke, Bastian Galler, Juergen Off, Werner Bergbauer, Thomas Lehnhardt
  • Patent number: 10475778
    Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Alexander F. Pfeuffer, Norwin von Malm, Stefan Grötsch, Andreas Plößl
  • Patent number: 10472735
    Abstract: There is herein described a method of making a single crystal wavelength conversion element from a polycrystalline wavelength conversion element, a single crystal wavelength conversion element, and a light source containing same. By making the single crystal wavelength conversion element from a polycrystalline wavelength conversion element, the method provides greater flexibility in creating single crystal wavelength conversion elements as compared to melt grown methods for forming single crystals. Advantages may include higher activator contents, forming more complex shapes without machining, providing a wider range of possible activator gradients and higher growth rates at lower temperatures.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: John Kelso, Alan Piquette, David Johnston
  • Patent number: 10475968
    Abstract: In one embodiment, an optoelectronic component includes a semiconductor chip, which is able to emit radiation. A conversion element comprises at least one wavelength converting phosphor dispersed in a matrix material. The matrix material is a low-melting phosphate glass and water resistant. The optoelectronic component emits in operation warm white light.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Yi Zheng, Victor Perez
  • Patent number: 10475967
    Abstract: Wavelength converters (103) with improved thermal conductivity are described. In some embodiments the wavelength converters include a thermally conductive component (204, 206) and a wavelength conversion material (205) mixed with or dispersed in the thermally conductive component. The wavelength conversion material (205) includes non-agglomerated quantum dots. The presence of the thermally conductive component may facilitate removal of heat from the wavelength converter, potentially reducing the impact of elevated temperature on the performance of the wavelength conversion material therein. Methods of making such wavelength converters and lighting devices including such wavelength converters are also described.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Maria Anc, Mark Hannah
  • Patent number: 10475955
    Abstract: A method for producing a plurality of components and a component are disclosed. In an embodiment the method includes providing a carrier composite comprising a base body and a planar connecting surface, providing a wafer composite comprising a semiconductor body composite and a planar contact surface, connecting the wafer composite to the carrier composite thereby forming a joint composite so that the planar contact surface and the planar connecting surface are joined forming a joint boundary surface. The method further includes reducing inner mechanical stress in the joint composite so that a material of the carrier composite is removed in places, wherein the joint composite is thermally treated in order to form a permanent mechanically-stable connection between the wafer composite and the carrier composite, and wherein reducing inner stress is effected prior to the thermal treatment.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Sophia Huppmann, Simeon Katz, Marcus Zenger, Dominik Scholz
  • Patent number: 10475951
    Abstract: A method for producing an optoelectronic semiconductor chip is disclosed. A substrate is provided and a first layer is grown. An etching process is carrying out to initiate V-defects. A second layer is grown and a quantum film structure is grown. An optoelectronic semiconductor chip is also disclosed. The method can be used to produce the optoelectronic semiconductor chip.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: November 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Löffler, Tobias Meyer, Adam Bauer, Christian Leirer
  • Patent number: 10475773
    Abstract: A method for producing a plurality of semiconductor components and a semiconductor component are disclosed. In an embodiment the component includes a light transmissive carrier, a semiconductor body disposed on the light transmissive carrier, the semiconductor body including a first semiconductor layer, a second semiconductor layer and an active region being arranged between the first semiconductor layer and the second semiconductor layer, wherein the semiconductor body includes a first patterned main surface facing the light transmissive carrier and a second main surface facing away from the carrier and a contact structure including a first contact area and a second contact area arranged on the second main surface, wherein the second contact area is electrically connected to the second semiconductor layer, and wherein the contact structure comprises a via extending from the second main surface throughout the second semiconductor layer and the active region into the first semiconductor layer.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: November 12, 2019
    Assignees: OSRAM Opto Semiconductors GmbH, X-Celeprint Limited
    Inventors: Matthew Meitl, Christopher Bower, Tansen Varghese