Abstract: A sensor and a 3-D position detection system are disclosed. In an embodiment a sensor includes at least one sensor chip configured to detect radiation, at least one carrier on which the sensor chip is mounted and a cast body that is transmissive for the radiation and that completely covers the sensor chip, wherein a centroid shift of the sensor chip amounts to at most 0.04 mrad at an angle of incidence of up to at least 60°, wherein the cast body comprises a light inlet side that faces away from the sensor chip, and the light inlet side comprises side walls bounding it on all sides, wherein the side walls are smooth, planar and transmissive for the radiation, wherein a free field-of-view on the light inlet side has an aperture angle of at least 140°, and wherein the cast body protrudes in a direction away from the sensor chip beyond a bond wire.
Type:
Grant
Filed:
September 21, 2018
Date of Patent:
January 31, 2023
Assignee:
OSRAM OLED GMBH
Inventors:
Daniel Dietze, Maximilian Assig, Claus Jaeger
Abstract: A radiation-emitting semiconductor component is disclosed. In an embodiment, a component includes a semiconductor layer sequence and a carrier on which the semiconductor layer sequence is arranged, wherein the semiconductor layer sequence comprises an active region configured for generating radiation, an n-conducting mirror region and a p-conducting mirror region, wherein the active region is arranged between the n-conducting mirror region and the p-conducting mirror region, and wherein the p-conducting mirror region is arranged closer to the carrier than the active region.
Abstract: A phosphor is specified. The phosphor has the general molecular formula: (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(XD)n:E. In this case, MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, -E=Eu, Ce, Yb and/or Mn, XC=N and XD=C. The following furthermore hold true: a+b+c+d=t; e+f+g+h+i+j=u; k+l+m+n=v; a+2b+3c+4d+e+2f+3g+4h+5i+6j?k?2l?3m?4n=w; 0.8?t?1; 3.5?u?4; 3.5?v?4; (?0.2)?w?0.
Type:
Grant
Filed:
August 10, 2017
Date of Patent:
January 31, 2023
Assignee:
OSRAM OLED GMBH
Inventors:
Markus Seibald, Dominik Baumann, Tim Fiedler, Stefan Lange, Hubert Huppertz, Daniel Dutzler, Thorsten Schroeder, Daniel Biehler, Simon Peschke
Abstract: An optoelectronic component is disclosed. In an embodiment an optoelectronic component includes a semiconductor chip configured to emit radiation and a conversion element including quantum dots, the conversion element configured to convert a wavelength of the radiation, wherein each quantum dot includes a wavelength-converting core and an inorganic encapsulation, wherein inorganic encapsulations form a matrix material of at least adjacent quantum dots, and wherein the adjacent quantum dots have a distance of at least 10 nm.
Abstract: An optoelectronic device includes a substrate, an optoelectronic semiconductor component being arranged on the substrate and having a light-emitting surface, preferably on the upper side of the optoelectronic semiconductor component, and a cover being arranged on the substrate for covering the optoelectronic semiconductor component, the cover providing a cavity which surrounds the optoelectronic semiconductor component when the cover is arranged on the substrate, the cover having at least one channel which extends along a first direction in the cover from the outside to the cavity, and the first direction being not parallel to the substrate and preferably extending at least approximately perpendicular to the substrate.
Abstract: An optoelectronic semiconductor component includes a primary light source including a carrier and a semiconductor layer sequence mounted thereon and configured to generate primary light, and at least one conversion unit of at least one semiconductor material adapted to convert the primary light into at least one secondary light, wherein the semiconductor layer sequence and the converter unit are separate elements, the semiconductor layer sequence includes a plurality of pixels, the pixels are configured to be controlled electrically independently of each other, the carrier includes a plurality of control units configured to drive the pixels, all pixels of a first group are free of a conversion unit and are configured to emit the primary light, all pixels of a second group of pixels include exactly one conversion unit each and are configured to emit the at least one secondary light.
Type:
Grant
Filed:
March 19, 2021
Date of Patent:
January 17, 2023
Assignee:
OSRAM OLED GmbH
Inventors:
Isabel Otto, Alexander F. Pfeuffer, Britta Göötz, Norwin von Malm
Abstract: Disclosed is a conversion element (1) comprising an active region (13) that is formed by a semiconductor material and includes a plurality of barriers (131) and quantum troughs (132), a plurality of first structural elements (14) on a top face (la) of the conversion element (1), and a plurality of second structural elements (15) and/or third structural elements (16) which are arranged on a face of the active region (13) facing away from the plurality of first structural elements (14). Also disclosed is a method for producing a conversion element of said type.
Type:
Grant
Filed:
January 17, 2017
Date of Patent:
January 17, 2023
Assignee:
OSRAM OLED GMBH
Inventors:
Andreas Loeffler, Adam Bauer, Matthias Peter, Michael Binder
Abstract: A quantum dot structure, a radiation conversion element and a light emitting device are disclosed. In an embodiment a quantum dot structure includes an active region configured to emit radiation, a barrier region surrounding the active region and a trap region spaced apart from the active region, wherein a band edge of the trap region forms a trap configuration with respect to the barrier region for at least one type of charge carrier.
Abstract: In an embodiment a method includes forming a semiconductor layer sequence on a growth substrate, applying a silicon oxide layer to a surface of the semiconductor layer sequence facing away from the growth substrate, applying a first metal layer to the silicon oxide layer, wherein the first metal layer includes gold, platinum, copper or silver, providing a silicon substrate and applying a second metal layer formed of the same material as the first metal layer to the silicon substrate, bonding the semiconductor layer sequence to the silicon substrate by direct bonding of the first metal layer to the second metal layer, wherein the first metal layer and the second metal layer are brought into contact at a temperature in a range of 150° C. to 400° C. so that they form a metal bonding layer and detaching the growth substrate from the semiconductor layer sequence.
Abstract: An optoelectronic device and a method for producing an optoelectronic device are disclosed. In an embodiment a method includes arranging an optoelectronic semiconductor chip with its top side towards a surface of a carrier, forming a recess at the surface of the carrier such that the recess surrounds the optoelectronic semiconductor chip, arranging a mold compound in the recess and above the surface of the carrier such that the optoelectronic semiconductor chip is embedded into the mold compound, wherein a bottom side of the optoelectronic semiconductor chip remains at least partially not covered by the mold compound, removing the carrier and arranging a wavelength-converting material above the surface of the carrier before arranging the optoelectronic semiconductor chip, wherein the wavelength-converting material is perforated while forming the recess.
Type:
Grant
Filed:
March 23, 2018
Date of Patent:
January 10, 2023
Assignee:
OSRAM OPTO SEMICONDUCTORS GMBH
Inventors:
Chui Wai Chong, Seong Tak Koay, Geok Ling Adelene Ng, Teng Hai Ocean Chuah
Abstract: A semiconductor radiation source includes at least one semiconductor chip that generates radiation; and at least one capacitor body, wherein the semiconductor chip and the capacitor body are stacked on top of each other, the semiconductor chip directly electrically connects in a planar manner to the capacitor body, the semiconductor chip is a ridge waveguide laser, and a ridge waveguide of the semiconductor chip is arranged on a side of the semiconductor chip facing away from the capacitor body.
Type:
Grant
Filed:
May 27, 2021
Date of Patent:
January 10, 2023
Assignee:
OSRAM OLED GmbH
Inventors:
Andreas Fröhlich, Hubert Halbritter, Josip Maric
Abstract: An optoelectronic component and a method for manufacturing an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes a diffractive optical element comprising at least one conversion material and a light source configured to emit primary radiation, wherein the conversion material is encapsulated in the diffractive optical element, and wherein the conversion material is arranged in a beam path of the primary radiation and is configured to convert the primary radiation at least partially into secondary radiation.
Abstract: An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment an optoelectronic component includes a semiconductor chip including a plurality of pixels, each pixel configured to emit electromagnetic primary radiation from a radiation exit surface and conversion layers located on at least a part of the radiation exit surfaces, wherein the conversion layers comprise a crosslinked matrix having a three-dimensional siloxane-based network and at least one phosphor embedded in the matrix, and wherein the conversion layers have a thickness of ?30 ?m.
Type:
Grant
Filed:
August 17, 2018
Date of Patent:
January 10, 2023
Assignee:
OSRAM OPTO SEMICONDUCTORS GMBH
Inventors:
Alan Piquette, Maxim N. Tchoul, Darshan Kundaliya, Adam Scotch, Gertrud Kräuter
Abstract: An arrangement that illuminates and records a moving scene, including a light source that illuminates the moving scene, a control device that operates the light source, and a camera that records the moving scene, wherein the light source includes a plurality of pixels, each of which is configured to illuminate an area of the moving scene, the control device is configured to operate the pixels, and the light source includes at least one semiconductor component including at least one semiconductor chip containing two or more of the plurality of pixels.
Type:
Grant
Filed:
February 22, 2018
Date of Patent:
January 3, 2023
Assignee:
OSRAM OLED GmbH
Inventors:
Marco Antretter, Mikko Perälä, Désirée Queren
Abstract: A distance measuring unit for measurement, based on signal time of flight, of a distance to an object, includes: an emitter configured for the emission of electromagnetic pulses, and sequentially into different emitter solid angle segments of the detection field, a receiver having a first face for detecting electromagnetic radiation, and imaging optics which image the detection field onto the first sensor face, and specifically each of the emitter solid angle segments onto a respective region of the first sensor face. The emitter solid angle segments follow one another along a scan axis, and correspondingly the regions of the first sensor face also follow one another along a first scan line. The first sensor face is subdivided into at least two pixels which adjoin one another on a first separating line. The first separating line extends at least in sections obliquely with respect to the first scan line.
Abstract: A phosphor combination may include a first phosphor and a second phosphor. The second phosphor may be a red-emitting quantum dot phosphor. The phosphor combination may optionally include a third phosphor that is a red-emitting phosphor with the formula (MB) (TA)3-2x(TC)1+2xO4-4xN4x:E. A conversion element may include the phosphor combination. An optoelectronic device may include the phosphor combination and a radiation-emitting semiconductor chip.
Type:
Grant
Filed:
November 8, 2018
Date of Patent:
January 3, 2023
Assignee:
OSRAM OLED GMBH
Inventors:
Rainer Butendeich, Philipp Pust, David O'Brien, Ion Stoll, Marcus Adam
Abstract: In an embodiment a component includes at least two component parts configured to generate electromagnetic radiation, two encapsulations and a one-piece carrier frame having a plurality of openings, each opening in form of a through-hole, wherein the component parts are arranged in different openings such that a respective component part is laterally spaced apart from inner walls of an associated opening, wherein each component part is enclosed in lateral directions by one of the encapsulations such that the component parts are mechanically connected to the carrier frame via the encapsulations thereby forming a self-supporting and mechanically stable unit, wherein the carrier frame comprises a casting material, the casting material being a castable silicone, a resin or a plastic material, and wherein the two encapsulations arranged in the two openings of the carrier frame have different materials or different fluorescents.
Abstract: An electronic component includes a lead frame; a semiconductor chip arranged above the lead frame; and a connection layer sequence arranged between the lead frame and the semiconductor chip, wherein the connection layer sequence includes a first intermetallic layer including gold and indium or gold, indium and tin, a second intermetallic layer including indium and a titanium compound, indium and nickel, indium and platinum or indium and titanium, and a third intermetallic layer including indium and gold.
Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
Type:
Grant
Filed:
September 30, 2020
Date of Patent:
December 27, 2022
Assignee:
OSRAM Opto Semiconductors GmbH
Inventors:
Tansen Varghese, Bruno Jentzsch, Laura Kreiner