Patents Assigned to OSRAM
  • Patent number: 11508878
    Abstract: A method of producing a layer stack includes a) forming a first layer having a first material composition on a substrate, b) performing intermediate processing of the substrate with the first layer, c) forming an additional layer having a second material composition, the first material composition and the second material composition differing from each other by at most 10% by weight, at least locally directly on the first layer and d) applying a second layer at least in places directly onto the additional layer.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: November 22, 2022
    Assignee: OSRAM OLED GmbH
    Inventor: Christoph Klemp
  • Patent number: 11509113
    Abstract: A method for producing a composite component (100) and a composite component (100) comprising a plurality of components (10), a removable sacrificial layer (4), an anchoring structure (3) and a common intermediate carrier (90) are specified. The components each have a semiconductor body (2) comprising an active zone (23), are configured to generate coherent electromagnetic radiation and are arranged on the common intermediate carrier. The sacrificial layer is arranged in a vertical direction between the intermediate carrier and the components. The anchoring structure comprises a plurality of anchoring elements (3A, 3B), wherein the anchoring structure and the sacrificial layer provide a mechanical connection between the intermediate carrier and the components.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: November 22, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Hubert Halbritter, Martin Rudolf Behringer
  • Patent number: 11502224
    Abstract: A semiconductor body main include a III-V compound semiconductor material having a p-conductive region doped with a p-dopant. The p-conductive region may include at least one first section, one second section, and one third section. The second section may be arranged between the first and third sections. The second section may directly adjoin the first and third sections. An indium concentration of at least one of the sections differs from an indium concentration of the other two sections.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: November 15, 2022
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Ingrid Koslow, Massimo Drago, Joachim Hertkorn, Alexander Frey
  • Patent number: 11502222
    Abstract: An optoelectronic semiconductor chip including a semiconductor layer sequence containing a phosphide compound semiconductor material, wherein the semiconductor layer sequence includes a p-type semiconductor region, an n-type semiconductor region and an active layer disposed between the p-type semiconductor region and the n-type semiconductor region, a current spreading layer including a transparent conductive oxide adjoining the p-type semiconductor region, and a metallic p-connection layer at least regionally adjoining the current spreading layer, wherein the p-type semiconductor region includes a p-contact layer adjoining the current spreading layer, the p-contact layer contains GaP doped with C, a C dopant concentration in the p-contact layer is at least 5*1019 cm?3, and the p-contact layer is less than 100 nm thick.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: November 15, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Xue Wang, Markus Broell
  • Patent number: 11499688
    Abstract: A light device may include a printed circuit board having at least one conductive section. An LED may be electrically connected and fixed on a conductive section of the printed circuit board by means of a soldered connection. The printed circuit board may also include a coating-type insulating layer and/or the conductive section has an edge. The fixing region of the LED is connected to a discharge space by means of an outlet, so that during the production process, melted solder can flow off in a defined manner. The arrangement and/or embodiment of the outlet is such that in a preferred direction of movement of the LED is developed in order to position same in a defined manner.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: November 15, 2022
    Assignee: OSRAM GMBH
    Inventor: Markus Stange
  • Patent number: 11501681
    Abstract: In an embodiment an arrangement includes a plurality of pixels, wherein each pixel includes at least two subpixels of each color, wherein each color is defined by a predefined target color location, wherein each subpixel comprises an optoelectronic component defined by a color location, wherein the color locations of the optoelectronic components of each color is chosen such that during operation of the optoelectronic components the predefined target color location is met for each color, wherein the optoelectronic components for each color are of identical design, and a controller configured to commonly control the optoelectronic components of a color.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: November 15, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Tilman Rügheimer, Hubert Halbritter
  • Patent number: 11502228
    Abstract: A method of producing an optoelectronic semiconductor device includes providing a frame part including a plurality of openings, providing an auxiliary carrier, connecting the auxiliary carrier to the frame part such that the auxiliary carrier covers at least some of the openings at an underside of the frame part, placing conversion elements onto the auxiliary carrier in at least some of the openings, placing optoelectronic semiconductor chips onto the conversion elements in at least some of the openings, applying a housing onto the conversion elements and around the semiconductor chips in at least some of the openings, and removing the frame part and the auxiliary carrier wherein a bottom surface of at least some of the optoelectronic semiconductor chips remains free of the housing.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: November 15, 2022
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Seng-Teong Chang, Choon Keat Or, Lee-Ying Jacqueline Ng, Chai-Yun Jade Looi
  • Patent number: 11495939
    Abstract: A semiconductor laser is provided that includes a semiconductor layer sequence and electrical contact surfaces. The semiconductor layer sequence includes a waveguide with an active zone. Furthermore, the semiconductor layer sequence includes a first and a second cladding layer, between which the waveguide is located. At least one oblique facet is formed on the semiconductor layer sequence, which has an angle of 45° to a resonator axis with a tolerance of at most 10°. This facet forms a reflection surface towards the first cladding layer for laser radiation generated during operation. A maximum thickness of the first cladding layer is between 0.5 M/n and 10 M/n at least in a radiation passage region, wherein n is the average refractive index of the first cladding layer and M is the vacuum wavelength of maximum intensity of the laser radiation.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: November 8, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Bruno Jentzsch, Alvaro Gomez-Iglesias, Alexander Tonkikh, Stefan Illek
  • Patent number: 11493702
    Abstract: The invention relates to an optoelectronic component, which, in at least one embodiment, comprises an optoelectronic semiconductor chip having an emission side and a conversion element on the emission side. The conversion element is configured for conversion of a primary beam emitted by the semiconductor chip in operation as intended. The conversion element is divided into at least one first layer and one second layer. The first layer is arranged between the second layer and the emission side. The first layer comprises a first matrix material having fluorescent particles introduced therein. The second layer comprises a second matrix material having fluorescent particles introduced therein. The first matrix material of the first layer has a higher index of refraction than the second matrix material of the second layer.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 8, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Ivar Tångring, Rebecca Römer, Claudia Jurenka
  • Patent number: 11495703
    Abstract: The light conversion efficiency of a solar cell is enhanced by using an optical downshifting layer in cooperation with a photovoltaic material. The optical downshifting layer converts photons having wavelengths in a supplemental light absorption spectrum into photons having a wavelength in the primary light absorption spectrum of the photovoltaic materiaL The cost effectiveness and efficiency of solar cells platforms can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic materiaL The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response to the photovoltaic materiaL The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: November 8, 2022
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Juanita N. Kurtin, Steven M. Hughes, Alex C. Mayer, Oun-Ho Park, Georgeta Masson
  • Patent number: 11497098
    Abstract: The invention relates to a method for controlling a current to a light-emitting diode in order for it to emit a desired light flux, wherein the current is determined depending on a time period during which the light-emitting diode is supplied with current, in order to generate the desired light flux for said light-emitting diode.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: November 8, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Benjamin Hoeflinger, Matthias Goldbach
  • Patent number: 11495706
    Abstract: A method for producing an optoelectronic component and an optoelectronic component are disclosed. In an embodiment a method includes providing an optoelectronic semiconductor chip with a radiation passage surface on a connection carrier, applying a deformable spacer to the radiation passage surface of the semiconductor chip, inserting the connection carrier with the semiconductor chip into a cavity of a tool, deforming, by the tool, the deformable spacer and encapsulating the semiconductor chip with a casting compound.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: November 8, 2022
    Assignee: OSRAM OLED GMBH
    Inventor: Michael Mueller
  • Patent number: 11490058
    Abstract: Provided is an optoelectronic light source that includes a plurality of semiconductor lasers each configured to emit a laser beam and arranged on a mounting platform, and a redirecting optical element configured to redirect the laser beams. The redirecting optical element includes for each one of the plurality of semiconductor lasers a separate reflection zone, the reflection zones are shaped differently from one another, and after passing the redirecting optical element, the laser beams run in a common plane.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: November 1, 2022
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Jörg Erich Sorg, Alan Lenef
  • Patent number: 11490485
    Abstract: A circuit arrangement for connecting a plurality of LED modules in parallel comprises a positive pole terminal and a negative pole terminal for connecting a driver, a positive pole terminal line for electrically connecting the positive pole terminal to the modules, a negative pole terminal line for electrically connecting the negative pole terminal to the modules, a plurality of positive pole terminal contacts for electrically connecting the positive pole terminal line to anode terminal contacts of the modules, and a plurality of negative pole terminal contacts for electrically connecting the negative pole terminal line to cathode terminal contacts of the modules.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: November 1, 2022
    Assignee: OSRAM GmbH
    Inventor: Klaus Fischer
  • Patent number: 11486819
    Abstract: A detection assembly and a method for producing a detection assemblies are disclosed. In an embodiment a detection arrangement includes an emitter configured to generate radiation having a peak wavelength in an infrared spectral range, a detector configured to receive the radiation, a mounting surface comprising at least a first contact surface and a second contact surface for external electrical connection of the detection arrangement, a form body adjoining the emitter and the detector at least in places and deflection optics, on which the radiation impinges during operation of the detection arrangement so that an optical path is formed between the emitter and the detector by the deflection optics, wherein the deflection optics include a scattering body into which the radiation enters during the operation through a surface of the scattering body facing the emitter.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: November 1, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Frank Singer, Matthias Sperl
  • Patent number: 11482512
    Abstract: An optoelectronic component includes an optoelectronic semiconductor chip that generates primary radiation during intended operation of the semiconductor chip, which primary radiation is coupled out via an emission side of the semiconductor chip, an optical element on the emission side and including a plurality of transmission fields arranged laterally side by side, wherein each transmission field is individually and independently electrically controllable, the transmission fields each include an electrochromic material, the transmission fields are such that, by electrically driving a transmission field, the transmittance of the electrochromic material for a radiation coming from the direction of the semiconductor chip during operation is changed and transmittance of the optical element in the region of the respective transmission field is changed for the respective radiation.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: October 25, 2022
    Assignee: OSRAM OLED GmbH
    Inventor: Luca Haiberger
  • Patent number: 11480723
    Abstract: The invention relates to various aspects of a ?-LED or a ?-LED array for augmented reality or lighting applications, in particular in the automotive field. The ?-LED is characterized by particularly small dimensions in the range of a few ?m.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: October 25, 2022
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Peter Brick, Jean-Jacques Drolet, Hubert Halbritter, Laura Kreiner, Thomas Schwarz, Tilman Ruegheimer, Frank Singer
  • Patent number: 11480744
    Abstract: In one embodiment, the optoelectronic component comprises a first emission zone, which emits electromagnetic radiation during operation. Furthermore, the component comprises an optical waveguide with an entrance side facing the first emission zone, a distribution element and with output coupling structures on a side of the distribution element facing away from the first emission zone. The optical waveguide is a simply connected solid body. In a top view of the side of the optical waveguide facing away from the first emission zone, the distribution element completely covers the first emission zone. The output coupling structures are individual, spaced-apart elevations, each of which extends away from the distribution element and comprises an output coupling surface at an end facing away from the distribution element. A structure that is nontransmissive to the radiation of the first emission zone is arranged on the optical waveguide in the region between the output coupling structures.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: October 25, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Luca Haiberger, Daniel Richter
  • Patent number: 11473221
    Abstract: The invention relates to an embodiment in which the textile component comprises at least one flexible thread that can be woven. A plurality of semiconductor columns are attached in or on the thread and are configured to generate radiation. Furthermore, a plurality of electrical lines are located in or on the thread, by means of which lines the semiconductor columns are electrically contacted. An average height (H) of the semiconductor columns in a direction transverse to a longitudinal direction (L) of the thread is at most 20% of an average diameter (D) of the thread.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: October 18, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Luca Haiberger, Siegfried Herrmann
  • Patent number: 11475829
    Abstract: An optoelectronic light emitting device includes an optoelectronic semiconductor component configured to generate light, a current source configured to generate a current, and a PWM transistor driven by a pulse-width modulated signal. The PWM transistor enters a first state or a second state based on said pulse-width modulated signal. The PWN transistor is configured to supply the optoelectronic semiconductor component with the current generated by the current source in the first state and to decouple it from the current generated by the current source in the second state. The current source is manufactured by a first technology and the PWM transistor is manufactured by a second technology.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: October 18, 2022
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Hubert Halbritter, Jens Richter