Patents Assigned to Particle Measuring Systems, Inc.
-
Patent number: 12130222Abstract: Disclosed is a method for detecting and/or growing particles, comprising controlling the surface area exposed to the saturator region by monitoring at least one of a depth of the working liquid on the saturator surface, the surface area exposed to the saturator region, or a volume of the working liquid on the saturator surface. Also disclosed is an apparatus or system for detecting and/or growing particles, comprising a fluidics system configured to control the surface area exposed to the saturator region by monitoring at least one of a depth of the working liquid on the saturator surface, the surface area exposed to the saturator region, or a volume of the working liquid on the saturator surface. Certain aspects do not employ one or more porous structures for vapor generation, nor a separate carrier fluid flow or inlet comprising a carrier fluid and vaporized working liquid for combining with the sample flow in the saturator region.Type: GrantFiled: June 14, 2022Date of Patent: October 29, 2024Assignee: PARTICLE MEASURING SYSTEMS, INC.Inventors: Edward Yates, Cary Hertert, Brian A. Knollenberg
-
Publication number: 20240264066Abstract: A method of calibrating an optical particle counter may include performing first and second calibration procedures. The first calibration procedure may include performing sensitivity calibration and/or channel size calibration of the optical particle counter under calibration using a monodispersed particle standard. The second calibration procedure may include sample volume calibration. The sample volume calibration may include: flowing a polydispersed particle calibration sample dispersed in a fluid through the optical particle counter under calibration to produce a first signal output; flowing the polydispersed particle calibration sample dispersed in the fluid through a reference optical particle counter to produce a reference signal output; comparing the first signal output with the reference signal output; and adjusting, in response to the comparing, an effective sample volume parameter stored in a computer readable memory of the optical particle counter under calibration.Type: ApplicationFiled: February 5, 2024Publication date: August 8, 2024Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventor: Brian A. KNOLLENBERG
-
Publication number: 20240230509Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.Type: ApplicationFiled: October 27, 2023Publication date: July 11, 2024Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Timothy A. ELLIS, Chris BONINO, Brian A. KNOLLENBERG, James LUMPKIN, Daniel RODIER, Dwight SEHLER, Mehran Vahdani MOGHADDAM, Thomas RAMIN
-
Publication number: 20240219412Abstract: Provided herein are systems and methods for sampling of controlled environments, including automated and/or robotically controlled sampling. The present systems and methods are useful for determining the presence of, quantity, size, concentration, viability, species or characteristics of particles, including viable biological particles, within a controlled environment. The described systems and methods may utilize rotational motion via robotics, automation and/or control systems to reduce, or eliminate, some or all of the steps carried out by human operators in traditional particle collection and/or analysis methodologies. The described systems and methods may rotational motion via robotics, automation and/or control systems to provide for particle sampling over time periods that are well-defined for an individual impactor and/or sequential sampling via a plurality of impactors.Type: ApplicationFiled: December 18, 2023Publication date: July 4, 2024Applicants: PARTICLE MEASURING SYSTEMS, INC., PHARMA INTEGRATION S.R.LInventors: Giovanni SCIALÒ, Davide RECCHIA, Claudio BECHINI
-
Publication number: 20240183759Abstract: Provided herein are systems and methods allowing for automated sampling and/or analysis of controlled environments, for example, to determine the presence, quantity, size, concentration, viability, species or characteristics of particles within the environment. The described systems and methods may utilize robotics or automation or remove some or all of the collection or analysis steps that are traditionally performed by human operators. The methods and systems described herein are versatile and may be used with known particle sampling and analysis techniques and particle detection devices including, for example, optical particle counters, impingers and impactors.Type: ApplicationFiled: January 23, 2024Publication date: June 6, 2024Applicant: Particle Measuring Systems, Inc.Inventors: Giovanni SCIALO, Davide RECCHIA
-
Patent number: 11988593Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.Type: GrantFiled: November 20, 2020Date of Patent: May 21, 2024Assignee: PARTICLE MEASURING SYSTEMS, INC.Inventors: Timothy A Ellis, Chris Bonino, Brian A. Knollenberg, James Lumpkin, Daniel Rodier, Dwight Sehler, Mehran Vahdani Moghaddam, Thomas Ramin
-
Publication number: 20240159787Abstract: Devices and methods for sampling, detecting and/or characterizing particles, for example, via collection, growth and analysis of viable biological particles such as microorganisms. Devices and methods of the invention include particle samplers and impactors including a sampling head comprising one or more intake apertures, a selectively removable cover, an impactor base connected to the sampling head, and one or more magnets fixed to the sampling head, the selectively removable cover and/or the impactor base. The one or more magnets allow for robotic manipulation of the impactor devices.Type: ApplicationFiled: December 20, 2023Publication date: May 16, 2024Applicants: PARTICLE MEASURING SYSTEMS, INC., PHARMA INTEGRATION S.R.LInventors: Giovanni SCIALÒ, Davide RECCHIA, Claudio BECHINI
-
Publication number: 20240133793Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.Type: ApplicationFiled: October 26, 2023Publication date: April 25, 2024Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Timothy A. ELLIS, Chris BONINO, Brian A. KNOLLENBERG, James LUMPKIN, Daniel RODIER, Dwight SEHLER, Mehran Vahdani MOGHADDAM, Thomas RAMIN
-
Patent number: 11946852Abstract: Provided herein are optical systems and methods for detecting and characterizing particles. Systems and method are provided which increase the sensitivity of an optical particle counter and allow for detection of smaller particles while analyzing a larger fluid volume. The described systems and methods allow for sensitive and accurate detection and size characterization of nanoscale particles (e.g., less than 50 nm, optionally less than 20 nm, optionally less than 10 nm) for large volumes of analyzed fluids.Type: GrantFiled: December 16, 2021Date of Patent: April 2, 2024Assignee: PARTICLE MEASURING SYSTEMS, INC.Inventors: Daniel Rodier, James Lumpkin, Dwight Sehler, Brian Knollenberg
-
Patent number: 11927509Abstract: Provided herein are systems and methods allowing for automated sampling and/or analysis of controlled environments, for example, to determine the presence, quantity, size, concentration, viability, species or characteristics of particles within the environment. The described systems and methods may utilize robotics or automation or remove some or all of the collection or analysis steps that are traditionally performed by human operators. The methods and systems described herein are versatile and may be used with known particle sampling and analysis techniques and particle detection devices including, for example, optical particle counters, impingers and impactors.Type: GrantFiled: December 30, 2021Date of Patent: March 12, 2024Assignee: PARTICLE MEASURING SYSTEMS, INC.Inventors: Giovanni Scialo, Davide Recchia
-
Patent number: 11892462Abstract: Devices and methods for sampling, detecting and/or characterizing particles, for example, via collection, growth and analysis of viable biological particles such as microorganisms. Devices and methods of the invention include particle samplers and impactors including a sampling head comprising one or more intake apertures, a selectively removable cover, an impactor base connected to the sampling head, and one or more magnets fixed to the sampling head, the selectively removable cover and/or the impactor base. The one or more magnets allow for robotic manipulation of the impactor devices.Type: GrantFiled: January 19, 2021Date of Patent: February 6, 2024Assignees: Pharma Integration SRL, Particle Measuring Systems, Inc.Inventors: Giovanni Scialò, Davide Recchia, Claudio Bechini
-
Publication number: 20240027326Abstract: An optical system for particle size and concentration analysis, includes: at least one laser that produces an illuminating beam; a focusing lens that focuses the illuminating beam on particles that move relative to the illuminating beam at known or pre-defined angles to the illuminating beam through the focal region of the focusing lens; and at least two forward-looking detectors, that detect interactions of particles with the illuminating beam in the focal region of the focusing lens. The focusing lens is a cylindrical lens that forms a focal region that is: (i) narrow in the direction of relative motion between the particles and the illuminating beam, and (ii) wide in a direction perpendicular to a plane defined by an optical axis of the system and the direction of relative motion between the particles and the illuminating beam. Each of the two forward-looking detectors is comprised of two segmented linear arrays of detectors.Type: ApplicationFiled: August 11, 2023Publication date: January 25, 2024Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Nir KARASIKOV, Ori WEINSTEIN, Shoam SHWARTZ, Mehran Vahdani MOGHADDAM, Uri DUBIN
-
Patent number: 11781965Abstract: An optical system for particle size and concentration analysis, includes: at least one laser that produces an illuminating beam; a focusing lens that focuses the illuminating beam on particles that move relative to the illuminating beam at known or pre-defined angles to the illuminating beam through the focal region of the focusing lens; and at least two forward-looking detectors, that detect interactions of particles with the illuminating beam in the focal region of the focusing lens. The focusing lens is a cylindrical lens that forms a focal region that is: (i) narrow in the direction of relative motion between the particles and the illuminating beam, and (ii) wide in a direction perpendicular to a plane defined by an optical axis of the system and the direction of relative motion between the particles and the illuminating beam. Each of the two forward-looking detectors is comprised of two segmented linear arrays of detectors.Type: GrantFiled: October 25, 2018Date of Patent: October 10, 2023Assignee: PARTICLE MEASURING SYSTEMS, INC.Inventors: Nir Karasikov, Ori Weinstein, Shoam Shwartz, Mehran Vahdani Moghaddam, Uri Dubin
-
Publication number: 20230236107Abstract: A particle detection system may include a light source, a first beam splitter, a particle interrogation zone, a reflecting surface, a second beam splitter, a first photodetector, and a second photodetector. The first beam splitter may be configured to split the source beam into an interrogation beam and a reference beam. The particle interrogation zone may be disposed in the path of the interrogation beam. The reflecting surface may be configured to reflect the interrogation beam back on itself. The second beam splitter may be configured to: (i) receive the reference beam and side scattered light from one or more particles interacting with the interrogation beam in the particle interrogation zone; and (ii) produce a first component beam and second component beam. The first photodetector may be configured to detect the first component beam. The second photodetector may be configured to detect the second component beam.Type: ApplicationFiled: January 19, 2023Publication date: July 27, 2023Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Mehran Vahdani MOGHADDAM, Brian A. KNOLLENBERG, Dwight SEHLER
-
Publication number: 20230112632Abstract: Systems, methods, devices and software for operating particle sampling devices in a user-restrictive manner include a tag and a particle sampling device. The device includes a tag reader and a processor in communication with the tag reader. The processor: receives device configuration data and reads operational and/or user data from the tag having that data encoded thereon. Based on the data read from the tag, the processor may either grant or deny access to a user for performing device operations. Alternatively, for a headless particle sampling device configured for minimal user interaction during operation, the device is removably attached to a supporting structure proximate the tag positioned in or on the supporting structure. In the headless configuration, the processor reads device configuration parameters including network communication information from the tag following device power up.Type: ApplicationFiled: December 13, 2022Publication date: April 13, 2023Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Matt MICHAELIS, Daniele PANDOLFI, Brett HALEY
-
Publication number: 20230087059Abstract: A particle detection system may include a laser optical source providing a beam of electromagnetic radiation, one or more beam shaping elements for receiving the beam of electromagnetic radiation, an optical isolator disposed in the path of the beam, between the laser source and the one or more beam shaping elements, a particle interrogation zone disposed in the path of the beam, wherein particles in the particle interrogation zone interact with the beam of electromagnetic radiation, and a first photodetector configured to detect light scattered and/or transmitted from the particle interrogation zone, a second photodetector configured to monitor power of the beam, and a controller configured to adjust the beam power based on a signal from the second photodetector, wherein the optical isolator is configured to filter optical feedback from the particle detection system out of an optical path leading to the second photodetector.Type: ApplicationFiled: September 22, 2022Publication date: March 23, 2023Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Brian A. KNOLLENBERG, Dwight SEHLER, Saeid ROSTAMI
-
Patent number: 11576045Abstract: Systems, methods, devices and software for operating particle sampling devices in a user-restrictive manner include a tag and a particle sampling device. The device includes a tag reader and a processor in communication with the tag reader. The processor: receives device configuration data and reads operational and/or user data from the tag having that data encoded thereon. Based on the data read from the tag, the processor may either grant or deny access to a user for performing device operations. Alternatively, for a headless particle sampling device configured for minimal user interaction during operation, the device is removably attached to a supporting structure proximate the tag positioned in or on the supporting structure. In the headless configuration, the processor reads device configuration parameters including network communication information from the tag following device power up.Type: GrantFiled: August 7, 2020Date of Patent: February 7, 2023Assignee: PARTICLE MEASURING SYSTEMS, INC.Inventors: Matt Michaelis, Daniele Pandolfi, Brett Haley
-
Publication number: 20230009668Abstract: Disclosed is a liquid impinger, for example a liquid impinger, particularly a disposable liquid impinger. The liquid impinger comprises, for example, at least one nozzle positioned in the interior and attached to the bottom portion. In some aspects, the liquid impinger comprises a polymeric material. Also disclosed are methods of making the liquid impinger comprising, for example, forming at least two components, assembling the at least two components into the liquid impinger, filling the liquid impinger with liquid, and exposing the filled liquid impinger to radiation for sterilization prior to use. Also disclosed are methods of using the liquid impinger, for example, by transporting a gas comprising analytes through the liquid impinger and transferring at least a portion of the analytes from the gas into the liquid contained therein.Type: ApplicationFiled: June 24, 2022Publication date: January 12, 2023Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Giovanni SCIALÒ, Davide RECCHIA
-
Patent number: 11540248Abstract: A mobile monitoring device for monitoring controlled contamination areas may include a motorized mobile structure, a sampling unit, and a central management and control unit. The motorized mobile structure is configured to move within an area to be monitored. The sampling unit is positioned on said mobile structure, and configured to perform sampling operations of air and/or surfaces of said area and obtain sampling data. The central management and control unit is operatively connected to the mobile structure and to said sampling unit. The mobile structure may be controlled by the central unit to reach predefined points of the area to be monitored. The sampling unit may be selectively activated and/or deactivated by said central unit in correspondence with said predefined starting points of said sampling operations.Type: GrantFiled: November 3, 2020Date of Patent: December 27, 2022Assignee: PARTICLE MEASURING SYSTEMS, INC.Inventors: Giovanni Scialò, Davide Recchia, Claudio Bechini
-
Publication number: 20220397510Abstract: Disclosed is a method for detecting and/or growing particles, comprising controlling the surface area exposed to the saturator region by monitoring at least one of a depth of the working liquid on the saturator surface, the surface area exposed to the saturator region, or a volume of the working liquid on the saturator surface. Also disclosed is an apparatus or system for detecting and/or growing particles, comprising a fluidics system configured to control the surface area exposed to the saturator region by monitoring at least one of a depth of the working liquid on the saturator surface, the surface area exposed to the saturator region, or a volume of the working liquid on the saturator surface. Certain aspects do not employ one or more porous structures for vapor generation, nor a separate carrier fluid flow or inlet comprising a carrier fluid and vaporized working liquid for combining with the sample flow in the saturator region.Type: ApplicationFiled: June 14, 2022Publication date: December 15, 2022Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Edward YATES, Cary HERTERT, Brian A. KNOLLENBERG