Abstract: The present invention relates to ophthalmic and non-ophthalmic systems with blue light filtering and Yellowness Index ranges. UV and IR filtering are also included. Industrial applications are also outlined in the invention.
Type:
Grant
Filed:
February 7, 2020
Date of Patent:
July 18, 2023
Assignee:
High Performance Optics, Inc.
Inventors:
Andrew W. Ishak, Sean P. McGinnis, Ronald D. Blum, Michael B. Packard
Abstract: A shock absorber is provided that includes a shock body and a shaft assembly. The shock body has an inner chamber. The inner chamber is defined by a cylindrical interior surface. At least one groove is formed in the interior surface within at least one select length of the shock body. A piston of the shaft assembly is received within the inner chamber of the shock body. The piston includes valving to allow dampening matter that is received within the inner chamber to pass through the piston to allow the piston to move within the inner chamber. The at least one groove that is formed within the interior surface is configured to allow at least some of the dampening matter to bypass the valving of the piston to allow the piston to move through the at least one select length with less resistance.
Abstract: Aspects of the disclosure are directed to an automatic device configurator. In accordance with one aspect, the automatic device configurator includes external switch inputs configured to set one or more configuration parameters; a configuration status input configured to be compatible with a standard interface; an output port; and a central processing unit (CPU) coupled to the output port, the external switch inputs and the configuration status input, wherein the CPU is configured to send configuration commands based on the one or more configuration parameters.
Abstract: Methods and apparatus for an exhaust demand control system for measuring one or more contaminants at one or more exhaust locations within one or a plurality of exhaust ducts or plenums served by an exhaust fan system. Example systems and methods can include sensing the one or more contaminants within the one or more exhaust duct locations using a multipoint air sampling system having one or more sensors and comparing contaminant concentration measurements from the one or more of said exhaust duct or plenum locations against an action level to create a fan setback signal.
Abstract: A quartz glass container is shown and described herein. The quartz glass container exhibits a low concentration of surface defects on an inner surface of the container. In aspects hereof, the container may have a surface defect density of 50 or fewer surface defects per square centimeter within a 1 cm band centered 1 cm from the base of the container.
Type:
Grant
Filed:
January 12, 2018
Date of Patent:
July 11, 2023
Assignee:
Momentive Performance Materials Quartz, Inc.
Inventors:
Ben Gauthier, Robert Koch, Todd Springer, David Xu, Gloriana Volio
Abstract: The invention relates to a process for the preparation of trichlorosilane (HSiCl3) which comprises the reaction of tetrachlorosilane (SiCU) with hydridosilanes in the presence of a catalyst.
Abstract: An implantable device for delivery of a macromolecular drug compound is provided. The device comprises a core having an outer surface and a membrane layer positioned adjacent to the outer surface of the core. The core comprises a core polymer matrix within which is dispersed a drug compound having a molecular weight of about 0.5 kDa or more, the polymer matrix containing a hydrophobic polymer. Further, the membrane layer comprises a membrane polymer matrix within which the macromolecular drug compound is optionally dispersed. The concentration of the macromolecular drug compound in the core is greater than the concentration of the macromolecular drug compound in the membrane layer.
Abstract: An implantable device for delivery of a macromolecular drug compound is provided. The device comprises a core having an outer surface and a membrane layer positioned adjacent to the outer surface of the core. The core comprises a core polymer matrix within which is dispersed a drug compound having a molecular weight of about 0.5 kDa or more, the polymer matrix containing a hydrophobic polymer. Further, the membrane layer comprises a membrane polymer matrix within which the macromolecular drug compound is optionally dispersed. The membrane polymer matrix contains a hydrophobic polymer in combination with a hydrophilic compound, and the weight ratio of the hydrophobic polymer to the hydrophilic compound within the membrane polymer matrix ranges from about 0.25 to about 200.