Patents Assigned to Power Systems, Inc.
  • Patent number: 11855530
    Abstract: A resonant converter has a primary resonant tank circuit and a secondary resonant tank circuit. An inverter circuit converts an input DC voltage received by the resonant converter at an input voltage node to a pulsating signal that is fed to the primary resonant tank circuit to generate a resonant tank current that flows through a primary winding of a transformer. The resonant tank current induces current in a secondary winding of the transformer. The induced current is rectified by a rectifier and the rectified signal is filtered by an output capacitor to generate an output DC voltage at an output voltage node. The secondary resonant tank circuit is disposed between the input voltage node and the output voltage node to inject odd order harmonics of the operating frequency to the primary tank circuit to shape the resonant tank current.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: December 26, 2023
    Assignee: MONOLITHIC POWER SYSTEMS, INC.
    Inventors: Junjie Feng, Xu Han, Fengchun He, Daocheng Huang, Yuhang Sun
  • Publication number: 20230411525
    Abstract: A method of fabricating a vertical fin-based field effect transistor (FET) includes providing a semiconductor substrate having a first surface and a second surface, the semiconductor substrate having a first conductivity type, epitaxially growing a first semiconductor layer on the first surface of the semiconductor substrate, the first semiconductor layer having the first conductivity type and including a drift layer and a graded doping layer on the drift layer, and epitaxially growing a second semiconductor layer having the first conductivity type on the graded doping layer. The method also includes forming a metal compound layer on the second semiconductor layer, forming a patterned hard mask layer on the metal compound layer, and etching the metal compound layer and the second semiconductor layer using the patterned hard mask layer as a mask exposing a surface of the graded doping layer to form a plurality of fins surrounded by a trench.
    Type: Application
    Filed: June 23, 2023
    Publication date: December 21, 2023
    Applicant: Nexgen Power Systems, Inc.
    Inventors: Clifford Drowley, Ray Milano, Subhash Srinivas Pidaparthi, Andrew P. Edwards, Hao Cui, Shahin Sharifzadeh
  • Patent number: 11837951
    Abstract: A self-oscillating converter includes a power transistor coupled to a primary winding for controlling current flow in the primary winding, and a turn-on circuit configured to turn on the power transistor for maintaining oscillation in the self-oscillating converter. The self-oscillating converter also includes a turn-off circuit configured to turn off the power transistor to maintain an on-time of the power transistor at a pre-set value for power factor correction, and modulate the on-time of the power transistor to regulate the output current in the load device.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: December 5, 2023
    Assignee: Nexgen Power Systems, Inc.
    Inventor: Charles Coles
  • Patent number: 11831197
    Abstract: A load shed module configured to be connected in series between a power supply and a load is disclosed. A separate load shed module is connected in series between each load and the power supply. The load shed module determines the frequency of the voltage supplied from the power supply. Based on the frequency, the load shed module determines if utility power is connected or if a generator is connected. If the generator is connected and the frequency of the voltage goes outside of a desired operating range for a preset time, the load shed module disconnects the load from the power supply. Each load shed module includes a priority setting and reconnects its corresponding load after a predetermined time corresponding to the priority setting.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: November 28, 2023
    Assignee: Generac Power Systems, Inc.
    Inventors: Brendan Pancheri, Greg Wischstadt, Robert Iles, Andy Phillips, Taesik Yu, Sungmin Lee
  • Publication number: 20230378750
    Abstract: A method of clamping a voltage includes providing a fin-based field effect transistor (FinFET) device. The FinFET device includes an array of FinFETs. Each FinFET includes a source contact electrically coupled to a fin and a gate contact. The method also includes applying the voltage to the source contact and applying a second voltage to the gate contact. The voltage is greater than the second voltage. The method further includes increasing the voltage to a threshold voltage and conducting current from the source contact to the gate contact in response to the voltage reaching the threshold voltage.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 23, 2023
    Applicant: Nexgen Power Systems, Inc.
    Inventors: Andrew J. Walker, Clifford Drowley, Subhash Srinivas Pidaparthi, Andrew P. Edwards, Shahin Sharifzadeh, Joseph Tandingan
  • Publication number: 20230378348
    Abstract: A vertical, FinFET device includes an array of FinFETs comprising a plurality of rows and columns of fins. Each of the fins has a fin length and a fin width, a first fin tip, a second fin tip, and a central region disposed between the first fin tip of a first row of the plurality of rows and the second fin tip of a second row of the plurality of rows. The central region is characterized by an electrical conductivity. The FinFET device also includes a neutralized region including the first fin tip, a region between the first row of the plurality of rows and the second row of the plurality of rows, and the second fin tip. The neutralized region is characterized by a second electrical conductivity less than the electrical conductivity of the central region. The FinFET device further includes an electrical conductor disposed over the neutralized region.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 23, 2023
    Applicant: Nexgen Power Systems, Inc.
    Inventors: Clifford Drowley, Andrew J. Walker, Andrew P. Edwards, Subhash Srinivas Pidaparthi, Thomas E. Kopley
  • Patent number: 11824086
    Abstract: A method for manufacturing a vertical JFET includes providing a III-nitride substrate having a first conductivity type and forming a first III-nitride layer coupled to the III-nitride substrate. The first III-nitride layer is characterized by a first dopant concentration and the first conductivity type. The method also includes forming a plurality of trenches within the first III-nitride layer and epitaxially regrowing a second III-nitride structure in the trenches. The second III-nitride structure is characterized by a second conductivity type. The method further includes forming a plurality of III-nitride fins, each coupled to the first III-nitride layer, wherein the plurality of III-nitride fins are separated by one of a plurality of recess regions, and epitaxially regrowing a III-nitride gate layer in the recess regions. The III-nitride gate layer is coupled to the second III-nitride structure and the III-nitride gate layer is characterized by the second conductivity type.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: November 21, 2023
    Assignee: NEXGEN POWER SYSTEMS, INC.
    Inventors: Hao Cui, Clifford Drowley
  • Patent number: 11821215
    Abstract: The present invention is generally directed to energy storage systems comprising manufactured architectural materials having electrical battery systems embedded therein. The manufactured materials are generally provided as architectural panels, such as panels useful for interior or exterior cladding for buildings, flooring, countertops, or stairs. The panels comprise at least one battery device or battery assembly that is over-formed by and/or bonded with the architectural material. In preferred embodiments, the panels are formed by flowing a viscous architectural material precursor around the battery device or assembly and curing the precursor so as to solidify the architectural material. The panels may be electrically connected in any number of various arrangements, which can be chosen based on the specific application for the energy storage system.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: November 21, 2023
    Assignee: Spear Power Systems, Inc.
    Inventor: Jeffery T. Kostos
  • Patent number: 11824399
    Abstract: An electric power system is disclosed herein. The electric power system may manage and store electric power and provide uninterrupted electric power, derived from a plurality of electric power sources, to an electric load. The electric power system may contain an energy storage unit and generator assembly. The electric power system may connect to a power grid and renewable energy sources, and may charge the energy storage unit using the power grid, renewable energy sources, and/or generator assembly. The electric power system may be configured to determine load power usage and environmental factors to automatically and continuously modify a charging protocol to, for example, provide high efficiency and/or self-sufficiency from the power grid. The electric power system may operate entirely off-grid and may provide electricity to the load without interruption to power.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: November 21, 2023
    Assignee: Blue Power Systems, Inc.
    Inventors: Ramon A. Caamano, Gregory P. Miller
  • Patent number: 11824430
    Abstract: A method of measuring an AC input voltage at an input of a power converter includes measuring a DC bus voltage corresponding to the power converter. During a positive half-cycle of the AC input voltage, the method includes measuring a first voltage at the input of the power converter. During a negative half-cycle of the AC input voltage, the method includes turning on a high-side switch, measuring a second voltage at the input of the power converter, and computing a third voltage equal to the second voltage minus the DC bus voltage. The method further includes providing the AC input voltage as the first voltage during the positive AC half-cycle and the third voltage during the negative AC half-cycle.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: November 21, 2023
    Assignee: Nexgen Power Systems, Inc.
    Inventor: Anders Lind
  • Publication number: 20230361126
    Abstract: A vertical fin-based field effect transistor (FinFET) device includes an array of FinFETs comprising a plurality of rows and columns of fins, each of the fins having a fin length and a fin width measured laterally with respect to the fin length and including a first fin tip disposed at a first end of the fin; a second fin tip disposed at a second end of the fin opposing the first end; a bridging structure connecting the first fin tip to an adjacent fin; a central region disposed between the first fin tip and the second fin tip and characterized by an electrical conductivity; and a source contact electrically coupled to the central region. The FinFET device also includes a gate region surrounding the fins.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 9, 2023
    Applicant: Nexgen Power Systems, Inc.
    Inventors: Andrew P. Edwards, Andrew J. Walker, Clifford Drowley, Subhash Srinivas Pidaparthi
  • Patent number: 11811324
    Abstract: An integrated circuit of a buck-boost converter working in a buck mode with a buck power switching cycle, a boost mode with a boost power switching cycle or a buck-boost mode with a buck-boost power switching cycle. The integrated circuit integrates a first power switch, a second power switch, a third power switch and a fourth power switch, and an output current sensing circuit. The buck-boost power switching cycle consists of a first buck-boost phase, a second buck-boost phase and a third buck-boost phase. The output current sensing circuit samples the current flowing through the first power switch during the second buck-boost phase and the current flowing through the fourth power switch during the third buck-boost phase so as to generate the output current information.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: November 7, 2023
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Jian Zhang, Changjiang Chen
  • Publication number: 20230349319
    Abstract: Engines operating using multiple, different types of fuel are described. The engines may include components that control the introduction of fuels and/or reduce premature pre-ignition of fuels, such as a fuel comprising a percentage of hydrogen. The described hydrogen-fueled engines have a reduced carbon footprint.
    Type: Application
    Filed: April 29, 2023
    Publication date: November 2, 2023
    Applicant: Enginuity Power Systems, Inc.
    Inventors: Gregory Powell, James C. Warren
  • Publication number: 20230347389
    Abstract: A blower includes a motor mounted to a frame. The frame includes wheels mounted to the frame. The blower includes a fan powered by the motor and a blower outlet. The fan is configured to expel air from the fan through the blower outlet. The blower outlet is movable in a horizontal direction and a vertical direction. The blower includes a horizontal control for controlling a horizontal position of the blower outlet. The blower includes a vertical control for controlling a vertical position of the blower outlet. Both the horizontal and vertical controls are positioned remote from the blower outlet.
    Type: Application
    Filed: May 1, 2023
    Publication date: November 2, 2023
    Applicant: Generac Power Systems, Inc.
    Inventors: William D. Wooden, Anthony Orgain, Seth Joubert
  • Publication number: 20230344362
    Abstract: A three-phase inverter and a control method therefor are provided. Resonant capacitors are provided between the midpoints of three bridge arms and the positive and negative poles of a DC bus to constitute resonant units with output inductors, so as to establish a resonant network for the implementation of soft switching, without adding a switching transistor. Compared with the soft-switching of the three-phase inverter in the conventional technology, circuit devices are saved, the control process is simplified, and system hardware and software overheads are reduced. By controlling the three-phase inverter to operate in a continuous mode, the switching loss of the switching transistor and the conduction loss of a flyback diode in the switching transistor are reduced, the conversion efficiency is improved, the electromagnetic noise caused by the switching transistor is reduced, and high-quality grid currents are output.
    Type: Application
    Filed: September 23, 2020
    Publication date: October 26, 2023
    Applicant: ALTENERGY POWER SYSTEM INC.
    Inventors: Jian WU, Biaojie QI, Yongchun YANG, Yuhao LUO
  • Patent number: 11799383
    Abstract: A hybrid DC-DC converter includes a converter circuit, a bridge circuit with a bridge path that includes a winding of a transformer, and another bridge circuit with a bridge path that includes another winding of the transformer. Current through the bridge path of the other bridge circuit flows through the converter circuit in one direction and bypasses the converter circuit in the other direction. The converter circuit can operate in buck, boost, or buck-boost mode.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: October 24, 2023
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Dianbo Fu, Jinghai Zhou, Daocheng Huang, Junjie Feng
  • Publication number: 20230333154
    Abstract: In some aspects, a ground detection system may measure a difference from a tie point of the ungrounded electrical system and a ground point to determine if a grounded condition exists. The ground detection system may measure a plurality of signals at a plurality of distributed overload protection devices. The ground detection system may compare the plurality of signals from each of the plurality of distributed overload protection devices to stored threshold values. The ground detection system may determine a location of the grounded condition based at least in part on the comparing the plurality of signals from each of the plurality of distributed overload protection devices to the stored threshold values. In various embodiments, the location can be based on a length and an impedance of electrical circuit wiring. The ground detection system may display the location of the grounded condition on a display. Numerous other aspects are described.
    Type: Application
    Filed: April 11, 2023
    Publication date: October 19, 2023
    Applicant: DRS Naval Power Systems, Inc.
    Inventors: Eric M. Waydick, Timothy Carlson
  • Patent number: 11791633
    Abstract: Various enhancements to grid-interactive inverters in accordance with embodiments of the invention are disclosed. One embodiment includes input terminals configured to receive a direct current, output terminals configured to provide an alternating output current to the utility grid, a controller, an output current sensor, and a DC-AC inverter stage comprising a plurality of switches controlled by control signals generated by the controller. In addition, the controller is configured to: generate control signals that cause the switches in the DC-AC inverter stage to switch a direct current in a bidirectional manner; measure the alternating output current; perform frequency decomposition of the output current; and generate control signals that cause the switches in the DC-AC inverter stage to switch current in a way that the magnitude of a plurality of unwanted current components is subtracted from the resulting output current.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: October 17, 2023
    Assignee: Generac Power Systems, Inc.
    Inventors: Christopher Richard Jones, Alexandre Rudolf Kral
  • Patent number: 11791705
    Abstract: A multi-phase voltage converter has a plurality of integrated circuits (ICs), and a controller. Each IC has a power switch, a monitoring pin and a current sense pin. The power switch is controlled to convert an input voltage to an output voltage. The current sense pin is capable of providing a current sense signal representative of a current flowing through the power switch. The controller is capable of providing a clock signal via the monitoring pin, and provides a plurality of data signals via the current sense pin of the plurality of ICs. Each of the plurality of ICs is assigned an identification code based on the clock signal and one of the plurality of data signals.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: October 17, 2023
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Chiahsin Chang, Chao Liu, James Nguyen, Francis Yu, Huichun Dai, Fangyu Zhang
  • Patent number: 11791708
    Abstract: A power converter includes a switch control circuit for driving a high side switch of the power converter comprising the high side switch and a low side switch connected in series. The switch control circuit may have a first terminal for receiving a low side switch driving signal of the low side switch, a second terminal used as a reference ground terminal of the switch control circuit, and a third terminal used as an output terminal to provide a high side switch driving signal, the switch control circuit can draw power from the low side switch driving signal and may not require internal regulators that should sustain high voltage.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: October 17, 2023
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Yan-Cun Li