Patents Assigned to pSemi Corporation
  • Patent number: 11177735
    Abstract: During its first and second residence times, corresponding first and second currents flow between a charge pump and a circuit that connects to one of the charge pump's terminals. Based on a feedback measurement from the charge pump, a controller adjusts these first and second currents.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: November 16, 2021
    Assignee: pSemi Corporation
    Inventors: Tim Wen Hui Yu, Gregory Szczeszynski
  • Patent number: 11177782
    Abstract: Methods and devices to fabricate low-cost wideband LNAs that are tunable to multiple frequency bands. Decoupling capacitors are used as part of a tuning circuit implemented at the LNA input. The capacitors are switchably selectable to also tune a signal into desired frequency bands.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: November 16, 2021
    Assignee: PSEMI CORPORATION
    Inventor: Cheng-Kai Luo
  • Patent number: 11171631
    Abstract: A programmable voltage variable attenuator (VVA) that enables selection among multiple analog, continuous attenuation ranges. Some embodiments include a dual-mode interface to enable digitally programming a DAC and provide the analog output to control the attenuation level of the VVA, or alternatively apply an externally provided analog voltage to directly control the VVA attenuation level. A VVA may be used in conjunction with a digital step attenuator (DSA). Some embodiments include circuitry for changing the VVA reference impedance. The attenuator architecture of the VVA includes one or more variable resistance shunt elements and/or series elements which may be a resistor and FET circuit controlled by a provided variable analog voltage. The multiple resistance element architecture may be implemented with stacked FET devices. Embodiments for the VVA may be based, for example, on T-type, Bridged-T type, Pi-type, L-pad type, reflection type, or balanced coupler type attenuators.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: November 9, 2021
    Assignee: pSemi Corporation
    Inventor: Peter Bacon
  • Patent number: 11164801
    Abstract: An extension of conventional IC fabrication processes to include some of the concepts of flip-chip assemblies while producing a final “non-flip chip” circuit structure suitable for conventional packaging or for direct usage by customers. Multiple IC dies are fabricated on a semiconductor wafer in a conventional fashion, solder bumped or the like, and singulated. The singulated dies, which may be of different sizes and functionality, are then flip-chip assembled onto a single tile substrate of thin-film material which has been patterned with vias, peripheral connection pads, and one or more ground planes. Once dies are flip-chip mounted to the thin-film tile, all of the dies on the entire tile may be probed using automated testing equipment. Sets of dies of different functionality may be tested as a system or subsystem. Once test probing is complete, the dies (or sets of dies) and tile are singulated into die/tile assemblies.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 2, 2021
    Assignee: pSemi Corporation
    Inventors: Mark Moffat, Andrew Christie, Duncan Pilgrim, Ronald Eugene Reedy
  • Patent number: 11165350
    Abstract: An apparatus for power conversion comprises a voltage transformation element, a regulating element, and a controller; wherein, a period of the voltage transformation element is equal to a product of a coefficient and a period of the regulating circuit, and wherein the coefficient is selected from a group consisting of a positive integer and a reciprocal of said integer.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: November 2, 2021
    Assignee: pSemi Corporation
    Inventor: David M. Giuliano
  • Patent number: 11164891
    Abstract: Novel integrated circuits (SOI ICs), and methods for making and mounting the ICs are disclosed. In one embodiment, an IC comprises a first circuit layer of the IC formed from an active layer of an SOI wafer. The first circuit layer is coupled to a first surface of buffer layer, and a second surface of the buffer layer is coupled to a selected substrate comprising an insulating material. The selected substrate may be selected, without limitation, from the following types: sapphire, quartz, silicon dioxide glass, piezoelectric materials, and ceramics. A second circuit layer of the IC are formed, coupled to a second surface of the selected substrate. In one embodiment of a mounted IC, the first circuit layer is coupled to contact pads on a package substrate via solder bumps or copper pillars. The second circuit layer is coupled to contact pads on the package substrate via wire bonds.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: November 2, 2021
    Assignee: pSemi Corporation
    Inventors: James S. Cable, Anthony Mark Miscione, Ronald Eugene Reedy
  • Patent number: 11159130
    Abstract: Various methods and circuital arrangements for protection of an RF amplifier are presented. According to one aspect, the RF amplifier is part of switchable RF paths that include at least one path with one or more attenuators that can be used during normal operation to define different modes of operation of the at least one path. An RF level detector monitors a level of an RF signal during operation of any one of the switchable RF paths and forces the RF signal through the at least one path with one or more attenuators while controlling the attenuators to provide an attenuation of the RF signal according to a desired level of protection at an input and/or output of the RF amplifier.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: October 26, 2021
    Assignee: pSemi Corporation
    Inventors: Parvez Daruwalla, Joseph Porter Slaton
  • Patent number: 11152907
    Abstract: An LNA having a plurality of paths, each of which can be controlled independently to achieve a gain mode. Each path includes at least an input FET and an output FET coupled in series. A gate of the output FET is controlled to set the gain of the LNA. Signals to be amplified are applied to the gate of the input FET. Additional stacked FETs are provided in series between the input FET and the output FET.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: October 19, 2021
    Assignee: pSemi Corporation
    Inventors: Emre Ayranci, Miles Sanner
  • Patent number: 11146167
    Abstract: Over-current detection circuits and methods for adiabatic power converters that provide numerous advantages over known solutions, including simple digital control, enabling trimming to be done in the low voltage domain, and avoidance of high-voltage sense current mirrors. Embodiments include a slope detector circuit configured to measure a slope of the immediate output voltage VX of an adiabatic power converter during a charge pump clock cycle, compare the measured slope to a pre-determined value representing a slope of an over-current condition, and assert a flag if comparison indicates an over-current condition. An auto-calibration circuit may be included which presents a set of known loads across the output of an adiabatic power converter at device startup, measures the resulting counts from the slope detector counter, and extrapolates to a count that corresponds to a maximum allowed current.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: October 12, 2021
    Assignee: pSemi Corporation
    Inventor: Walid Fouad Mohamed Aboueldahab
  • Patent number: 11146173
    Abstract: Startup charge balancing circuits and methods for capacitive charge pumps that avoid large in-rush currents and resulting voltage spikes. Embodiments include a charge balance circuit coupled to a corresponding charge pump capacitor of a charge pump. The charge balance circuit includes a comparator that compares the output voltage of the charge pump to a feedback voltage derived from the voltage across the corresponding charge pump capacitor. In response, either a constant current source or a constant current sink is coupled to the charge pump capacitor. Current sourcing or sinking continues until the voltage across the corresponding charge pump capacitor approximates a target voltage, at which point the comparator output toggles, which results in uncoupling of the coupled current source or current sink from the corresponding charge pump capacitor. Embodiments only need one current sink and one current source per charge pump capacitor, and charge balancing is independent of leakage currents.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: October 12, 2021
    Assignee: pSemi Corporation
    Inventor: Carlos Zamarreno Ramos
  • Patent number: 11133669
    Abstract: A limiter having a more ideal limiting function, a short response time, and an adjustable limiting threshold. In one embodiment, a self-activating limiter stack is coupled between circuit ground and a signal line between a source and a receiver. The limiter stack limits the power from the source when the voltage on the signal line exceeds the breakdown voltage of the limiter stack. The threshold of the limiter stack is controlled in part by a first control voltage applied to a control input. A rectifying power detector circuit connected between a node on the signal line and the control input of the limiter stack provides a second control voltage as a function of the signal power at the node. The combined first and second control voltages are applied to the control input to modulate the ON resistance of the limiter stack, thereby limiting the leakage power reaching the protected receiver.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: September 28, 2021
    Assignee: pSemi Corporation
    Inventors: Jianhua Lu, Hojung Ju
  • Patent number: 11133782
    Abstract: Various methods and circuital arrangements for biasing gates of stacked transistor amplifier that includes two series connected transistor stacks of different polarities are presented, where the amplifier is configured to operate according to different modes of operation. Such circuital arrangements operate in a closed loop with a feedback error voltage that is based on a sensed voltage at a common node of the two series connected transistor stacks. According to one aspect, gate biasing voltages to input transistors of each of the two series connected stacks are adjusted by respective current mirrors that are controlled based on the feedback error voltage. According to another aspect, other gate biasing voltages are generated by maintaining a fixed gate biasing voltage between any two consecutive gate basing voltages.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: September 28, 2021
    Assignee: PSEMI CORPORATION
    Inventor: John Birkbeck
  • Patent number: 11133338
    Abstract: FET IC structures that enable formation of integrated capacitors in a “flipped” SOI IC structure made using a back-side access process, such as a “single layer transfer” (SLT) process, and which eliminate or mitigate unwanted parasitic couplings to a handle wafer. In some embodiments, a conductive interconnect layer may be patterned, pre-SLT, to form an isolated first capacitor plate. In other embodiments, pre-SLT, a conductive region of the active layer of an IC may be patterned to form an isolated first capacitor plate, with one or more interconnect layers being fabricated in position to form an electrical contact to the first capacitor plate. In either case, a post-SLT top-side layer of conductive material may be patterned to form a second capacitor plate. Couplings to the resulting capacitor structures include only external connections, only internal connections, or both internal and external connections.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: September 28, 2021
    Assignee: pSemi Corporation
    Inventors: Abhijeet Paul, Hiroshi Yamada, Alain Duvallet
  • Patent number: 11128261
    Abstract: Various methods and circuital arrangements for biasing one or more gates of stacked transistors of an amplifier are presented, where the amplifier can have a varying supply voltage. According to one aspect, the gate of the input transistor of the amplifier is biased with a fixed voltage whereas the gates of the other transistors of the amplifier are biased with variable voltages that are linear functions of the varying supply voltage. According to another aspect, the linear functions are such that the variable voltages coincide with the fixed voltage at a value of the varying supply voltage for which the input transistor is at the edge of triode. According to another aspect, biasing of the stacked transistors is such that, while the supply voltage varies, the drain-to-source voltage of the input transistor is maintained to a fixed value whereas the drain-to-source voltages of all other transistors are equal to one another.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: September 21, 2021
    Assignee: pSemi Corporation
    Inventors: Tero Tapio Ranta, Christopher C. Murphy, Jeffrey A. Dykstra
  • Patent number: 11121623
    Abstract: An apparatus for power conversion includes a transformation stage for transforming a first voltage into a second voltage. The transformation stage includes a switching network, a filter, and a controller. The filter is configured to connect the transformation stage to a regulator. The controller controls the switching network.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 14, 2021
    Assignee: pSemi Corporation
    Inventor: David Giuliano
  • Patent number: 11088668
    Abstract: In electronic circuits having various gain states, small gain phase shift differences required among various gain states may pose a challenging problem. The disclosed methods and devices provide solution to such challenge. Electronic circuits are described wherein a first path including an amplifier may be bypassed by a second path including only passive elements and for gain states smaller than 0 dB. In such electronic circuits, a phase shifter included in the second path can be adjusted to address the required phase shift among various gain states.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: August 10, 2021
    Assignee: pSemi Corporation
    Inventors: David Kovac, Joseph Golat
  • Patent number: 11082040
    Abstract: Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals are described. Such devices and method include use of symmetrical compensation capacitances, symmetrical series capacitors, or symmetrical sizing of the elements of the stack.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: August 3, 2021
    Assignee: pSemi Corporation
    Inventors: Tero Tapio Ranta, Shawn Bawell, Robert W. Greene, Christopher N. Brindle, Robert Mark Englekirk
  • Patent number: 11075661
    Abstract: A clamping circuit that may be used to provide efficient and effective voltage clamping in an RF front end. The clamping circuit comprises two series coupled signal path switches and a bypass switch coupled in parallel with the series coupled signal path switches. A diode is coupled from a point between the series coupled signal path switches to a reference potential. In addition, an output selection switch within an RF front end has integrated voltage clamping to more effectively clamp the output voltage from the RF front end. Additional output clamping circuits can be used at various places along a direct gain signal path, along an attenuated gain path and along a bypass path.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: July 27, 2021
    Assignee: pSemi Corporation
    Inventors: Rong Jiang, Khushali Shah, Peter Bacon
  • Patent number: 11075708
    Abstract: Systems and methods for mitigation of cross channel interference are disclosed in which the TDD configuration of a potential cross channel interference source is detected by received signals within the network with which the source interferes. The TDD configuration is then used to synchronize the transmissions from the network with which the source interferes to reduce the interference. In addition, interference is mitigated by providing adaptive guard bands based on results of a radio frequency environmental survey and/or coaxing an interfering user to another channel. Sub-channels can be assigned based on the results of the radio frequency environmental survey and Quality of Service requirements for traffic flows.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: July 27, 2021
    Assignee: pSemi Corporation
    Inventors: Mehmet Yavuz, Nagi Mahalingam
  • Patent number: 11075604
    Abstract: Radio frequency (RF) mixer circuits having a complementary frequency multiplier module that requires no balun to multiply a lower frequency base oscillator signal to a higher frequency local oscillator (LO) signal, and which has a significantly reduced IC area compared to balun-based frequency multipliers. In one embodiment, the complementary frequency multiplier module includes a complementary pair of FETs controlled by an applied base oscillator signal. The complementary FETs are coupled to a common-gate FET amplifier and alternate becoming conductive in response to the base oscillator signal. The alternating switching of the complementary FETs in response to the opposing phases of the base oscillator signal cause the common-gate FET amplifier to output a higher frequency local oscillator (LO) signal. The LO signal is coupled to the LO input of a mixer or mixer core of a type suitable for use in conjunction with a frequency multiplier.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: July 27, 2021
    Assignee: pSemi Corporation
    Inventor: John Birkbeck