Abstract: A phenol-free method for isolating a nucleic acid from a sample is provided, said method comprising the following steps: a) preparing a precipitation mixture by adding at least one metal cation precipitant and at least one organic solvent selected from aprotic polar solvents and protic solvents to the sample, wherein the precipitation mixture i) comprises the metal cation precipitant; ii) comprises the organic solvent in a concentration of 15% or less; iii) comprises a buffering agent; and iv) has an acidic pH value, and precipitating proteins; b) separating the precipitate from the supernatant, wherein the supernatant comprises small RNA having a length of less than 200 nt and large RNA having a length of at least 1000 nt; and c) isolating a nucleic acid from the supernatant. Using an organic solvent as claimed during the protein precipitation step in the defined concentration provides a supernatant which in addition to small RNA also comprises large RNA.
Abstract: The present invention pertains to a method for isolating nucleic acids from a sample, preferably a blood sample, comprising the following steps: a) obtaining a sample which has been stabilized by the use of at least one cationic detergent, wherein the cationic detergent has formed complexes with the nucleic acids; b) obtaining the complexes optionally together with other sample components from the stabilized sample, wherein said complexes comprise the nucleic acids to be isolated; c) resuspending the complexes and optionally adding one or more additives before, during and/or after resuspension, thereby obtaining a resuspended sample comprising at least: i) the nucleic acid to be isolated; ii) at least one chaotropic agent; and iii) at least one chelating agent; and d) isolating nucleic acids from the resuspended sample.
Abstract: The present invention concerns a method for activating a nucleic acid for a polymerase reaction with the steps: (a) Heating a nucleic acid to a temperature of 55° C. to 80° C., (b) cooling the nucleic acid to a temperature at which a polymerase shows no substantial decrease in activity, and (c) starting the polymerase reaction by the addition of a heat-labile polymerase to the nucleic acid.
Abstract: The present invention relates to a method for purifying nucleic acids from a sample containing nucleic acids, the method comprising at least the following steps: a. bringing the sample containing nucleic acids into contact with a nucleic acid binding phase comprising protonatable groups, wherein the protonatable groups have a pKs value of 9 to 12; b. binding the nucleic acids to the nucleic acid phase at a pH (binding pH) that is at least one pH unit less than the pKs value of at least one of the protonatable groups; c. eluting the nucleic acids at a pH greater than the binding pH but at least one pH unit less than the pKs value of at least one of the protonatable groups. Also disclosed are corresponding kits and nucleic acid binding phases that can be used for purifying nucleic acids.
Type:
Grant
Filed:
December 23, 2009
Date of Patent:
May 30, 2017
Assignee:
QIAGEN GMBH
Inventors:
Roland Fabis, Jan Petzel, Sabine Scheltinga
Abstract: The invention relates to an apparatus for purification, respectively processing and/or analysis of biological target molecules with a detection device for detecting at least one object, which includes at least one detection area, wherein the detection device is adapted to detect at least one height value of the detection area and is adapted to determine, from the at least one height value, a spatial position and/or orientation and/or a type and/or a presence and/or a number and/or a state of the at least one object. Further, the invention relates to a receiving device for receiving material for the processing, purification and/or analysis of biological target molecules with at least one identification element, wherein the at least one identification element defines a height profile for identifying the receiving device, wherein the height profile is provided for at least one height measurement and extends at least in sections along a line, preferably a straight line.
Abstract: The present invention pertains to method for purifying at least a target nucleic acid from a sample, said method comprising at least the following steps: a) incubating the sample with at least one protein-degrading compound; b) binding the target nucleic acid to a solid phase; c) eluting the target nucleic acid from the solid phase; d) incubating the eluted target nucleic acid with at least one protein-degrading compound; e) binding the target nucleic acid again to a solid phase; f) optionally eluting the bound target nucleic acid from the solid phase. It was surprisingly found that performing a second protein digestion step after the target nucleic acid was bound and eluted from a solid phase before the nucleic acids are rebound to a solid phase is very efficient in reducing remaining protein contaminations in the isolated nucleic acid.
Abstract: The present invention relates to a lysis, binding and/or wash reagent for isolating and/or purifying nucleic acids and a method for isolating and/or purifying nucleic acids.
Type:
Grant
Filed:
May 25, 2009
Date of Patent:
April 11, 2017
Assignee:
QIAGEN GmbH
Inventors:
Roland Fabis, Anke Homann-Wischinski, Thorsten Voss, Thomas Hanselle
Abstract: This invention relates to a process for synthesis of a cDNA in a sample, in an enzymatic reaction, whereby the process comprises the steps: simultaneous preparation of a first enzyme with polyadenylation activity, a second enzyme with reverse transcriptase activity, a buffer, at least one ribonucleotide, at least one deoxyribonucleotide, an anchor oligonucleotide; addition of a sample that comprises a ribonucleic acid; and incubation of the agents of the previous steps in one or more temperature steps, which are selected such that the first enzyme and the second enzyme show activity. The invention further relates to a reaction mixture that comprises a first enzyme with polyadenylation activity, a second enzyme with reverse transcriptase activity, optionally a buffer, optionally at least one ribonucleotide, optionally at least one deoxyribonucleotide, and optionally an anchor oligonucleotide. Moreover, the invention relates to a kit that comprises a corresponding reaction mixture.
Type:
Grant
Filed:
November 12, 2015
Date of Patent:
April 4, 2017
Assignee:
QIAGEN, GMBH
Inventors:
Holger Engel, Subrahmanyam Yerramilli, Martin Kreutz, Dirk Loeffert, Christian Korfhage
Abstract: The invention relates to a method for the quantification of one or more nucleic acids in a sample, for example: making a sample available which contains at least one nucleic acid to be quantified, adding an oligonucleotide probe, the oligonucleotide probe comprising a sequence which can specifically hybridize to the nucleic acid to be quantified or to a common sequence of the nucleic acids to be quantified, incubating the sample under conditions which allow the hybridization of the oligonucleotide probe to the nucleic acid(s) to be quantified, incubating the sample under conditions which allow the extension of hybridized probes, the nucleic acid(s) serving as a template in each case, removing the non-hybridized probes from the sample and quantifying the hybridized oligonucleotide probes to measure the quantity of the nucleic acid(s) to be quantified. The invention also relates to a kit for carrying out said method.
Abstract: The invention relates to the preparation of a biological sample for performing verifications and examinations, wherein the aim of the invention is the creation of a method for preparing a biological sample having an improved PCR sensitivity compared to the reference standard having standard PCR without having to raise the cost thereof.
Type:
Grant
Filed:
December 23, 2009
Date of Patent:
February 21, 2017
Assignee:
QIAGEN GMBH
Inventors:
Ralf Himmelreich, Thomas Rothmann, Roland Fabis, Christoph Erbacher
Abstract: The present invention provides methods, compositions and devices for stabilizing the extracellular nucleic acid population in a cell-containing biological sample using a poly(oxyethylene) polymer or mono-ethylene glycol as stabilizing agent.
Abstract: The present invention relates to a method for purifying biomolecules or for analyzing whether an aqueous phase contains biomolecules by means of magnetic separation. The invention further relates to uses, to devices, and to kits that relate to the method according to the invention.
Abstract: The invention is directed to novel methods, kits and uses to be employed for the generation of ligation-ready DNA amplicons of a target DNA by using 5?-phosphorylated primers.
Abstract: The present invention relates to an improved method for isolating nucleic acids, particularly genomic desoxyribonucleic acid (DNA) from blood.
Abstract: Disclosed are compositions and a method for amplification of nucleic acid sequences of interest. The disclosed method generally involves replication of a complex nucleic acid sample such as genomic samples using one, a few, or more primers such that, during replication, the replicated strands are displaced from the nucleic acid molecules in the sample by strand displacement replication of another replicated strand. It was discovered that highly complex nucleic acid samples can be efficiently amplified using only one or a few primers having specific nucleic acid sequences. The one or few primers are complementary to nucleic acid sequences distributed throughout nucleic acid in the sample.
Type:
Grant
Filed:
December 20, 2002
Date of Patent:
November 8, 2016
Assignee:
QIAGEN GMBH
Inventors:
Roger S. Lasken, Michael Egholm, Osama A. Alsmadi
Abstract: The present invention pertains to a method of isolating RNA from a sample comprising RNA, and DNA, comprising: a) adding an acidic denaturing composition comprising a chaotropic agent and phenol to the sample; b) adding a water-insoluble organic solvent and separating the resulting phases thereby forming a multi-phase mixture comprising an aqueous phase, optionally an interphase and an organic phase, wherein the RNA is concentrated in said aqueous phase and DNA and proteins are concentrated in said organic phase and/or in said interphase; and c) isolating said RNA from said aqueous phase, wherein at least one cationic detergent is added before separating the phases. It was found that the addition of at least one cationic detergent considerably reduces the amount of DNA in the aqueous, RNA containing phase. Therefore, the present invention allows to easily isolate pure RNA which comprises considerably less DNA contaminations.
Abstract: The invention relates to a chromatographic device for isolating and/or purifying double-stranded nucleic acids, preferably double-stranded DNA, from a mixture of such nucleic acids with single-stranded nucleic acids, oligonucleotides, mononucleotides, salts and/or other such impurities. The invention also relates to a method for chromatographically isolating and/or purifying same, and to a kit for this purpose.
Abstract: Provided is a method for extracting nucleic acids from a wax-embedded sample, and use of particular solvents for removing wax from a wax-embedded sample for extracting, isolating and/or purifying nucleic acids from a crosslinked wax-embedded sample.
Type:
Grant
Filed:
June 14, 2011
Date of Patent:
October 4, 2016
Assignee:
QIAGEN GmbH
Inventors:
Markus Mueller, Thorsten Singer, Esther Rosenberg, Joerg Hucklenbroich
Abstract: The present invention relates to a process for the parallel isolation and/or purification of RNA and DNA from the same fixed biological sample, the quantification and analysis of the nucleic acids isolated by the process according to the invention, to a kit for the parallel isolation and/or purification of RNA and DNA from a fixed sample and to the use of this kit for the diagnosis, prognosis, decision with respect to therapy and/or the monitoring of the therapy of a disease.
Abstract: The present invention pertains to the use of at least one abasic modification within the first 8 nucleotide positions of the 5? region of the antisense strand of a small interfering nucleic acid (siNA) molecule for reducing off-target effects. Provided are suitable modified siNAs, compositions and methods for producing respective siNAs, as well as kits comprising respective siNAs.
Type:
Grant
Filed:
June 11, 2010
Date of Patent:
August 23, 2016
Assignee:
QIAGEN GMBH
Inventors:
Peter Hahn, Eric Lader, Wolfgang Bielke, Alexander Azzawi, Jie Kang