Patents Assigned to QUALCOMM MEMS Technologies
  • Publication number: 20130113810
    Abstract: Systems, methods and apparatus are provided for electromechanical systems devices having a sidewall spacer along at least one sidewall of a conductive line. An electromechanical systems device can include a sidewall spacer along at least one sidewall of a conductive line under a movable layer. The sidewall spacer can be sloped such that the sidewall spacer has a decreasing width away from a substrate under the movable layer. The conductive line can be configured to route an electrical signal to the electromechanical systems device. In some implementations, a black mask structure of an electromechanical systems device can include the conductive line.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 9, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Chok Wah Ho, Fan Zhong
  • Patent number: 8437071
    Abstract: An array of display elements, such as interferometric modulators, is integrated with collapsible cavity microelectromechanical system (MEMS) electrical switches. The electrical switches and the display elements may be at least partially formed with the same manufacturing operations. The switches may form row or column select functions for the display elements.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: May 7, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Clarence Chui
  • Patent number: 8437070
    Abstract: By selectively placing color filters with different transmittance spectrums on an array of modulator elements each having the same reflectance spectrum, a resultant reflectance spectrum for each modulator element and it's respective color filter is created. In one embodiment, the modulator elements in an array are manufactured by the same process so that each modulator element has a reflectance spectrum that includes multiple reflectivity lines. Color filters corresponding to multiple colors, such as red, green, and blue, for example, may be selectively associated with these modulator elements in order to filter out a desired wavelength range for each modulator element and provide a multiple color array. Because the modulator elements are manufactured by the same process, each of the modulator elements is substantially the same and common voltage levels may be used to activate and deactivate selected modulation.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: May 7, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: William J. Cummings
  • Patent number: 8435838
    Abstract: A MEMS device may be package with a desiccant to provide a moisture-free environment. In order to avoid undesirable effects on the MEMS device, the desiccant may be selected or treated so as to be compatible with a particular MEMS device. This treatment may include baking of the desiccant to as to cause outgassing of moisture or other undesirable material. The structure of the MEMS device may also be altered to improve compatibility with particular desiccants.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 7, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Yen Hua Lin, Rihui He, Lingling Wu, Lauren Palmateer, David Heald
  • Publication number: 20130106918
    Abstract: This disclosure provides systems, methods, and apparatus for providing illumination using a light-turning stack having diffractive light-turning features to eject light out of the light-turning stack. In one aspect, light ejected from the light-turning stack may be applied to illuminate a display. The light-turning stack includes a light-guiding layer having a surface on which the diffractive light-turning features are disposed. A planarization layer having a refractive index different than a refractive index of the light-guiding layer directly contacts the diffractive light-turning features and has a planar surface opposite the light-turning features. The light-guiding layer can also have a planar surface opposite the light-turning features. Both these planar surfaces, on opposite sides of the light turning stack, facilitate the integration of the light-guiding layer with other layers of material, including functional layers.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Ion Bita, Gang Xu, Marek Mienko, Russell Wayne Gruhlke
  • Publication number: 20130106875
    Abstract: This disclosure provides systems, methods, and apparatus for fabricating electromechanical systems devices. In one aspect, a method of sealing an electromechanical systems device includes etching a sacrificial layer. The sacrificial layer is formed between a surface of a substrate and a shell layer and is etched through etch holes in the shell layer formed over the electromechanical systems device. The etch holes in the shell layer have a diameter greater than about one micron. The shell layer is then treated. A seal layer is deposited on the treated shell layer. The seal layer hermetically seals the electromechanical systems device.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Rihui HE, Ana Rangelova LONDERGAN, Evgeni Petrovich GOUSEV
  • Publication number: 20130106868
    Abstract: This disclosure provides systems, methods and apparatus for fabricating encapsulated devices, including electromechanical systems devices. In one aspect, a cover plate including one or more encapsulation lids releasably attached to a carrier substrate is provided. The one or more encapsulation lids can be joined to a device substrate to encapsulate one or more devices on the device substrate in a batch process. After joining, the encapsulation lids are released from the carrier substrate resulting in the formation of encapsulated devices on the device substrate. In another aspect, encapsulated devices are provided.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventor: Ravindra V. Shenoy
  • Publication number: 20130107572
    Abstract: The present invention introduces a new class of thin doubly collimating light distributing engines for use in a variety of general lighting applications. Output illumination from these slim-profile illumination systems whether square, rectangular or circular in physical aperture shape is directional, square, rectangular or circular in beam cross-section, and spatially uniform and sharply cutoff outside the system's adjustable far-field angular cone. Some embodiments provided include thin light distributing engines which provide input light collimated in one meridian and a light distributing element that maintains input collimation while collimating output light in the un-collimated orthogonal meridian, in such a manner that the system's far-field output light is collimated in both its orthogonal output meridians.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 2, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventor: QUALCOMM MEMS TECHNOLOGIES, INC.
  • Publication number: 20130106712
    Abstract: This disclosure provides systems, methods and apparatus related to touchscreens where glare from locations behind a front surface are reduced. In certain implementations, a bulk diffuser can be provided at one or more locations between a cover plate and a touch panel of a touchscreen or between the touchscreen and a display device. Various properties associated with the bulk diffuser, including a haze level and thickness, can be selected so as to yield a desired glare reduction in touchscreen devices that utilize different displays. Such displays can include an interferometric modulator-based display, as well as other types of displays.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: William J. Cummings, Marek Mienko, Hamid Tavakoli
  • Publication number: 20130100107
    Abstract: This disclosure provides methods and apparatus, including computer programs encoded on computer storage media, for reducing visual aberrations on an electronic display. One aspect is a method of writing an input image data value to a display element in a electronic display. The method includes receiving an input image data value, and quantizing the image data value based on a threshold. The threshold may be modulated based on a voltage drive signal provided to the display element in the electronic display. The method may also write the quantized image data value to the display element.
    Type: Application
    Filed: February 28, 2012
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Jeho Lee, Manu Parmar, Nao S. Chuei, Koorosh Aflatooni
  • Publication number: 20130100100
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for reducing artifacts in an image generated by a display device. In one aspect, data is written to a display and a position of display elements is maintained based on the application of a bias voltage pattern. The bias voltage pattern includes alternating polarities along one dimension in a pattern having a first frequency spectrum, and alternating polarities along a second dimension in a pattern having a second frequency spectrum that is different than the first frequency spectrum. At least one of the first and second frequency spectrums may include a plurality of frequency components.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Manu Parmar, Jeho Lee, Nao S. Chuei, Koorosh Aflatooni
  • Publication number: 20130100176
    Abstract: This disclosure describes systems, methods, and apparatus for increasing the frame rate of a display, while maintaining or improving image resolution. In one aspect, displays may include a plurality of pixels arranged along segment lines and common lines, and the common lines may be associated with one or more colors. In one implementation, one set of common lines is written independently of the other common lines, and at least one other set of common lines is written simultaneously. The resolution is preserved by the independent writing of one set of common lines, while the frame rate is increased by the line multiplication of another set of common lines.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventor: Qualcomm Mems Technologies, Inc.
  • Publication number: 20130100096
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for controlling brightness of a display based on ambient light conditions. In one aspect, a display device can include a reflective display and an auxiliary light source configured to provide supplemental light to the display. The display device further can include a sensor system configured to determine an illuminance of ambient light, and a controller configured to adjust the auxiliary light source to provide an amount of supplemental light to the display based at least in part on the determined illuminance. In one aspect, the amount of supplemental light remains substantially the same or substantially increases in response to increasing illuminance when the illuminance is below a first threshold, and substantially decreases in response to increasing illuminance when the illuminance is above a second threshold that is greater than or equal to the first threshold.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: James R. Webster, Russel A. Martin, Jennifer L. Gille
  • Publication number: 20130100145
    Abstract: This disclosure provides systems, methods, and apparatus for EMS devices. In one aspect, an EMS device includes at least one movable layer configured to move relative to one or more electrodes. The at least one movable layer can include a first conductive layer, a second conductive layer, and a non-conductive layer disposed between the first conductive layer and the second conductive layer. In some implementations, the movable layer can include at least one conductive via electrically connecting the first conductive layer and the second conductive layer through the non-conductive layer.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Fan Zhong, Yi Tao
  • Publication number: 20130100090
    Abstract: This disclosure provides systems, methods and apparatus for electromechanical systems variable capacitance devices. In one aspect, an electromechanical systems variable capacitance device includes a substrate with a first metal layer including a first bias electrode overlying the substrate. A member suspended above the first metal layer includes a dielectric beam and a second metal layer including a first radio frequency electrode and a ground electrode. The member and the first metal layer define a first air gap. A third metal layer over the member includes a second bias electrode, and the third metal layer and the member define a second air gap. The member includes a plane of symmetry substantially parallel a plane containing the first bias electrode.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Daniel FELNHOFER, Wenyue ZHANG, Je-Hsuing LAN
  • Publication number: 20130100003
    Abstract: A method and device for manipulating color in a display is disclosed. In one embodiment, a display comprises interferometric display elements formed to have spectral responses that produce white light. In one embodiment, the produced white light is characterized by a standardized white point.
    Type: Application
    Filed: December 12, 2012
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventor: QUALCOMM MEMS TECHNOLOGIES, INC.
  • Publication number: 20130100097
    Abstract: This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for controlling lighting of a display based on ambient light conditions. In one aspect, a display device can include a display and an auxiliary light source configured to provide supplemental light to the display. The display device further can include a sensor system configured to measure a diffuse illuminance of ambient light from a wide range of directions and configured to measure a directed illuminance of the ambient light from a relatively narrow range of directions. The display device further can include a controller configured to adjust the auxiliary light source to provide an amount of supplemental light to the display. The amount of supplemental light can be based at least in part on the measured directed illuminance and the measured diffuse illuminance of the ambient light.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventor: Russel Allyn Martin
  • Publication number: 20130100144
    Abstract: This disclosure provides systems, methods and apparatus for providing illumination by using light turning features in a light guide. In an aspect, an illumination system is provided with a light guide configured to support propagation of light along the length of the light guide. The light guide includes a light turning feature formed by an indentation in the light guide. A coating layer is disposed along surfaces of the indentation and the volume of the indentation over the coating is filled with a filler. The filler substantially fills the indentation to an upper surface of the light turning feature and is spaced apart from the light guide. The light guide is configured to provide total internal reflection of light at the upper surface of the light guide. Light from a light source can be injected into the light guide and then redirected by the turning features to illuminate a display.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Rashmi R. Rao, Teruo Sasagawa
  • Publication number: 20130100065
    Abstract: This disclosure provides systems, methods and apparatus for electromechanical systems variable capacitance devices. In one aspect, an electromechanical systems variable capacitance device includes a substrate with a bottom bias electrode on the substrate. A first radio frequency electrode above the bottom bias electrode defines a first air gap. A non-planarized first dielectric layer is between the bottom bias electrode and the first radio frequency electrode. A metal layer above the first radio frequency electrode defines a second air gap. The metal layer includes a top bias electrode and a second radio frequency electrode.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Daniel FELNHOFER, Wenyue ZHANG, Je-Hsuing LAN
  • Publication number: 20130100675
    Abstract: The present disclosure describes multi-functional windows. Functions of the multi-functional windows described herein can include transmitting incident light, generating photovoltaic power from incident light, and emitting light. In some implementations, a multi-functional window may be placed in a photovoltaic state, a lighting state, or a neutral state. A multi-functional window can continue to function as a normal window in transmitting a portion of any incident light in any of the photovoltaic, lighting, and neutral states. A multi-functional window can be implemented in a building or automobile.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Sijin Han, Fan Yang