Patents Assigned to QuickLogic Corporation
  • Patent number: 5675502
    Abstract: Node voltages in a net involving non-linear circuit elements are estimated, successively from one point in time to the next, without a computation-intensive step of solving a set of simultaneous equations. An RC tree representing the net is obtained by modeling circuit elements with resistors, capacitors and voltage sources. Voltages on nodes of the RC tree at a second point in time are then estimated given voltages on the nodes at a previous point in time, by: 1) performing a circuit substitution that enforces a backward stepping rule, and 2) performing a DC analysis thereby obtaining node voltages at the second point in time. In this way, estimated node voltages at successive points in time are obtained by repeating the circuit substitution for the next point in time and by repeating the DC analysis to obtain node voltages at the next point in time. The length of time required for the voltage on a selected node to reach a threshold voltage is the estimated propagation delay.
    Type: Grant
    Filed: August 22, 1995
    Date of Patent: October 7, 1997
    Assignee: QuickLogic Corporation
    Inventor: William Douglas Cox
  • Patent number: 5661412
    Abstract: Critical programmed reliability of a metal-to-metal amorphous silicon antifuse is a function of programming current, operating current and total programming time. The time required to program a field programmable gate array is reduced by classifying antifuses to be programmed into three or more classes according to the amount of programming time required to achieve critical programmed reliability under programming current and operating current conditions. Each of these classes of antifuses is programmed with near the minimum programming time required to program every antifuse in the class to critical reliability. In this way, large numbers of antifuses are not programmed with significantly greater amounts of programming time than are actually required to program them to critical reliability. The time required to program the field programmable gate array is therefore reduced. Techniques for obtaining critical reliability data used in classifying antifuses are also disclosed.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: August 26, 1997
    Assignee: QuickLogic Corporation
    Inventors: Amarpreet S. Chawla, Richard J. Wong, Andrew K. Chan
  • Patent number: 5654649
    Abstract: A programmable ASIC architecture allows the size of programming transistors to be reduced along with other parts of the device as advances in processing technology are made. Programming enable circuits are used to allow a programming address shift register having fewer bits to be used in the programming of antifuses. Methods of simultaneously programming multiple corresponding antifuses to speed ASIC programming are disclosed. Aspects of the architecture allow output protection for digital logic elements in modules to be eliminated, some testing transistors to be eliminated, the sizes of other testing transistors to be reduced, capacitances on interconnect wire segments to be reduced, some programming transistors to be eliminated, and the sizes of other programming transistors to be reduced.
    Type: Grant
    Filed: July 12, 1995
    Date of Patent: August 5, 1997
    Assignee: QuickLogic Corporation
    Inventor: Hua-Thye Chua
  • Patent number: 5600262
    Abstract: To facilitate the simultaneous programming of multiple antifuses on an integrated circuit, a first current path is established from a first programming terminal (VPP1) of a programmable logic device through a first antifuse to be programmed and a second current path is established from a second programming terminal (VPP2) of the programmable logic device through a second antifuse to be programmed. By supplying the programming current for programming the first antifuse from a different terminal than the programming current for programming the second antifuse, the two antifuses can be programmed simultaneously with an adequate amount of programming current being supplied to each antifuse. A programming current multiplexer circuit is disclosed for selectively coupling either a first programming voltage (VPP1) terminal, a second programming voltage (VPP2), or a ground terminal (GND) to a programming bus and/or to an antifuse to be programmed.
    Type: Grant
    Filed: October 11, 1995
    Date of Patent: February 4, 1997
    Assignee: QuickLogic Corporation
    Inventor: Paige A. Kolze
  • Patent number: 5594364
    Abstract: A field programmable gate array includes a programmable routing network, a programmable configuration network integrated with the programmable routing network; and a logic cell integrated with the programmable configuration network. The logic cell includes four two-input AND gates, two six input AND gates, three multiplexers, and a delay flipflop. The logic cell is a powerful general purpose universal logic building block suitable for implementing most TTL and gate array macrolibrary functions. A considerable variety of functions are realizable with one cell delay, including combinational logic functions as wide as thirteen inputs, all boolean transfer functions for up to three inputs, and sequential flipflop functions such as T, JK and count with carry-in.
    Type: Grant
    Filed: June 23, 1995
    Date of Patent: January 14, 1997
    Assignee: QuickLogic Corporation
    Inventors: Andrew K. Chan, John M. Birkner, Hua-Thye Chua
  • Patent number: 5587669
    Abstract: In a field programmable gate array, a plurality of wire segments extend parallel to each other between two logic cells. Some of the wire segments extend to logic cell inputs and others to logic cell outputs. A power wire extends perpendicular to the wire segments and crosses each of the wire segments. Antifuses are disposed to couple the input wire segments to the power wire but no antifuses are disposed between the output wire segments and the power wire.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: December 24, 1996
    Assignee: QuickLogic Corporation
    Inventors: Andrew K. Chan, John M. Birkner, Hua T. Chua
  • Patent number: 5557136
    Abstract: Antifuses and gate arrays with antifuses are disclosed that have high thermal stability, reduced size, reduced leakage current, reduced capacitance in the unprogrammed state, improved manufacturing yield, and more controllable electrical characteristics. Some antifuses include spacers in the antifuse via. In some antifuses, the programmable material is planar, and the top or the bottom electrode is formed in the antifuse via. In some gate arrays, the antifuses are formed above the dielectric separating two levels of routing channels rather than below that dielectric.
    Type: Grant
    Filed: June 1, 1992
    Date of Patent: September 17, 1996
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Richard J. Wong
  • Patent number: 5552720
    Abstract: A sequence of antifuses to be programmed is determined by: determining whether a first antifuse of an unordered list of antifuses to be programmed could be programmed last without programming any antifuses which are not to be programmed, determining whether a second antifuse of the unordered list could be programmed last without programming any antifuses which are not be programmed, and determining whether the first and second antifuses could be programmed simultaneously without programming any antifuses which are not to be programmed. In this way, a programming set of antifuses which could be programmed simultaneously is determined. Once determined, the antifuses making up the programming set are added to the head of an ordered list and are removed from the unordered list. By repeatedly determining programming sets of antifuses and adding each successive set of antifuses to an ordered list of antifuses, an antifuse programming sequence is developed.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: September 3, 1996
    Assignee: QuickLogic Corporation
    Inventors: Mukesh T. Lulla, William D. Cox
  • Patent number: 5544070
    Abstract: A programmable device comprises a first antifuse programmed with a first programming method and a second antifuse programmed with a second programming method, whereby an actual operating current flowing through the second antifuse exceeds a maximum permissible operating current of the first antifuse but does not exceed a maximum permissible operating current of the second antifuse, whereby an actual operating current flowing through the first antifuse does not exceed the maximum permissible operating current of the first antifuse, and whereby an actual operating current flowing through the second antifuse does not exceed the maximum permissible operating current of the second antifuse. By allowing the use of a programming method on some antifuses which would not be adequate for the programming of other antifuses, the realization of user-specific circuits in field programmable devices is facilitated and the reliability of user-specific circuits realized in field programmable devices is enhanced.
    Type: Grant
    Filed: August 27, 1992
    Date of Patent: August 6, 1996
    Assignee: QuickLogic Corporation
    Inventors: William D. Cox, Andrew K. L. Chan, Richard J. Wong, James M. Apland, Kathryn E. Gordon
  • Patent number: 5526276
    Abstract: A logic circuit is implemented on a macrocell of a field programmable device using select sets of a logic function which represents a transformation of the one or more input signals of the logic circuit to the output signal of the logic circuit. Select sets of a logic function are determined (i) by grouping input signals which correspond to equal co-factors of the logic function or (ii) by grouping input signals such that one input signal of a group never appears in a term of the logic function in a greedy phase-minimized RMF canonical form without all other input signals of the group. The logic circuit is implemented on a macrocell which includes a circuit element which selects one of two or more input signals according to one or more select signals, each of which is driven by a respective logic gate. Examples of such circuit elements include multiplexers and random access memory (RAM).
    Type: Grant
    Filed: April 21, 1994
    Date of Patent: June 11, 1996
    Assignee: QuickLogic Corporation
    Inventors: William D. Cox, Eric E. Lehmann, Mukesh T. Lulla, Venkatesh R. Nathamuni
  • Patent number: 5502315
    Abstract: In one method for forming amorphous silicon antifuses with significantly reduced leakage current, a film of amorphous silicon is formed in a antifuse via between two electrodes. The amorphous silicon film is deposited using plasma enhanced chemical vapor deposition, preferably in an silane-argon environment and at a temperature between 200 and 500 degrees C., or reactively sputtered in a variety of reactive gases. In another method, an oxide layer is placed between two amorphous silicon film layers. In yet another method, one of the amorphous silicon film layers about the oxide layer is doped. In another embodiment, a layer of conductive, highly diffusible material is formed either on or under the amorphous silicon film. The feature size and thickness of the amorphous silicon film are selected to minimize further the leakage current while providing the desired programming voltage. A method also is described for for forming a field programmable gate array with antifuses.
    Type: Grant
    Filed: December 2, 1993
    Date of Patent: March 26, 1996
    Assignee: QuickLogic Corporation
    Inventors: Hua-Thye Chua, Andrew K. Chan, John M. Birkner, Ralph G. Whitten, Richard L. Bechtel, Mammen Thomas
  • Patent number: 5495181
    Abstract: To facilitate the simultaneous programming of multiple antifuses on an integrated circuit, a first current path is established from a first programming terminal (VPP1) of a programmable logic device through a first antifuse to be programmed and a second current path is established from a second programming terminal (VPP2) of the programmable logic device through a second antifuse to be programmed. By supplying the programming current for programming the first antifuse from a different terminal than the programming current for programming the second antifuse, the two antifuses can be programmed simultaneously with an adequate amount of programming current being supplied to each antifuse. A programming current multiplexer circuit is disclosed for selectively coupling either a first programming voltage (VPP1) terminal, a second programming voltage (VPP2), or a ground terminal (GND) to a programming bus and/or to an antifuse to be programmed.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: February 27, 1996
    Assignee: QuickLogic Corporation
    Inventor: Paige A. Kolze
  • Patent number: 5477167
    Abstract: A programmable ASIC architecture allows the size of programming transistors to be reduced along with other parts of the device as advances in processing technology are made. Programming enable circuits are used to allow a programming address shift register having fewer bits to be used in the programming of antifuses. Methods of simultaneously programming multiple corresponding antifuses to speed ASIC programming are disclosed. Aspects of the architecture allow output protection for digital logic elements in modules to be eliminated, some testing transistors to be eliminated, the sizes of other testing transistors to be reduced, capacitances on interconnect wire segments to be reduced, some programming transistors to be eliminated, and the sizes of other programming transistors to be reduced.
    Type: Grant
    Filed: January 27, 1995
    Date of Patent: December 19, 1995
    Assignee: QuickLogic Corporation
    Inventor: Hua-Thye Chua
  • Patent number: 5471154
    Abstract: The invention allows programming an antifuse so as to reduce the antifuse resistance and the standard deviation of the resistance without increasing the programming current. This is achieved by passing current pulses of the opposite polarity through the antifuse. In some embodiments, the magnitude of the second pulse is lower than the magnitude of the first pulse. Further, if the antifuse is formed on a semiconductor substrate with one electrode on top of the other electrode and on top of the substrate, the current during the first pulse flows from the top electrode to the bottom electrode and not vice versa. A programming circuitry is provided that allows to program antifuses in a programmable circuit. A driver circuit is connected to each "horizontal" channel and each "vertical" channel. Each driver circuit is controlled by data in the driver circuit. The driver circuits are connected into shift registers so that all the data can be entered from one, two, three or four inputs.
    Type: Grant
    Filed: January 13, 1995
    Date of Patent: November 28, 1995
    Assignee: QuickLogic Corporation
    Inventors: Kathryn E. Gordon, Andrew K. Chan
  • Patent number: 5469109
    Abstract: Improved apparatus and methods for programming anti-fuse devices utilized in programmable semiconductor chips are described. An anti-fuse device circuit is disclosed wherein an anti-fuse device is connected between two programming transistors, and each programming transistor is connected to a separate voltage supply bus and to a control bus network having, for example, a common control bus or separate control buses. Interconnection structures of anti-fuse devices can be formed and a targeted anti-fuse device can be programmed by connecting a programming voltage to the first associated supply bus, by connecting another voltage or ground potential to the second associated supply bus, and by turning on the appropriate control bus line or lines so that the programming transistors conduct to provide a voltage differential across the targeted anti-fuse device.
    Type: Grant
    Filed: February 9, 1995
    Date of Patent: November 21, 1995
    Assignee: Quicklogic Corporation
    Inventor: John O. Paivinen
  • Patent number: 5469077
    Abstract: A method for reducing the resistance of a programing path through a programmable antifuse from a programming voltage to ground. A previously programmed helper antifuse connected somewhere along a two branch programming path is connected to either the programming voltage or to ground. As a result, a three branch programming path is established from the programming voltage to the antifuse to be programmed and from the antifuse to be programmed to ground. By adding the third branch to the programming path, the resistance of the programming path is reduced, thereby allowing a higher voltage to be dropped across the antifuse to be programmed during programming and thereby allowing increased current flow through the antifuse to be programmed during programming. In another embodiment, two or more helper antifuses are used to establish a four or more branch programming path having a still lower resistance from the programming voltage to ground.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: November 21, 1995
    Assignee: QuickLogic Corporation
    Inventor: William D. Cox
  • Patent number: 5448184
    Abstract: Improved apparatus and methods for programming anti-fuse devices utilized in programmable semiconductor chips are described. An anti-fuse device circuit is disclosed wherein an anti-fuse device is connected between two programming transistors, and each programming transistor is connected to a separate voltage supply bus and to a control bus network having, for example, a common control bus or separate control buses. Interconnection structures of anti-fuse devices can be formed and a targeted anti-fuse device can be programmed by connecting a programming voltage to the first associated supply bus, by connecting another voltage or ground potential to the second associated supply bus, and by turning on the appropriate control bus line or lines so that the programming transistors conduct to provide a voltage differential across the targeted anti-fuse device.
    Type: Grant
    Filed: March 11, 1994
    Date of Patent: September 5, 1995
    Assignee: QuickLogic Corporation
    Inventor: John O. Paivinen
  • Patent number: 5430390
    Abstract: A field programmable gate array includes a programmable routing network, a programmable configuration network integrated with the programmable routing network; and a logic cell integrated with the programmable configuration network. The logic cell includes four two-input AND gates, two six-input AND gates, three multiplexers, and a delay flipflop. The logic cell is a powerful general purpose universal logic building block suitable for implementing most TTL and gate array macrolibrary functions. A considerable variety of functions are realizable with one cell delay, including combinational logic functions as wide as thirteen inputs, all boolean transfer functions for up to three inputs, and sequential flipflop functions such as T, JK and count with carry-in.
    Type: Grant
    Filed: May 17, 1994
    Date of Patent: July 4, 1995
    Assignee: QuickLogic Corporation
    Inventors: Andrew K. Chan, John M. Birkner, Hua-Thye Chua
  • Patent number: 5424655
    Abstract: A programmable ASIC architecture allows the size of programming transistors to be reduced along with other parts of the device as advances in processing technology are made. Programming enable circuits are used to allow a programming address shift register having fewer bits to be used in the programming of antifuses. Methods of simultaneously programming multiple corresponding antifuses to speed ASIC programming are disclosed. Aspects of the architecture allow output protection for digital logic elements in modules to be eliminated, some testing transistors to be eliminated, the sizes of other testing transistors to be reduced, capacitances on interconnect wire segments to be reduced, some programming transistors to be eliminated, and the sizes of other programming transistors to be reduced.
    Type: Grant
    Filed: May 20, 1994
    Date of Patent: June 13, 1995
    Assignee: QuickLogic Corporation
    Inventor: Hua-Thye Chua
  • Patent number: 5416367
    Abstract: A field programmable gate array includes a programmable routing network, a programmable configuration network integrated with the programmable routing network; and a plurality of logic cells ("modules") integrated with the programmable configuration network. Each logic cell is a powerful general purpose universal logic building block. Each logic cell consists essentially of four two-input AND gates, one or two six-input AND gates, three multiplexers, and a D-type flipflop.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: May 16, 1995
    Assignee: QuickLogic Corporation
    Inventors: Andrew K. Chan, John M. Birkner, Hua T. Chua, William D. Cox