Patents Assigned to Rice University
  • Publication number: 20210155616
    Abstract: In one aspect, the present disclosure provides disorazole analogs of the formula: Formula (I) wherein the variables are as defined herein. In another aspect, the present disclosure also provides methods of preparing the compounds disclosed herein. In another aspect, the present disclosure also provides pharmaceutical compositions and methods of use of the compounds disclosed herein. Additionally, drug conjugates with cell targeting moieties of the compounds are also provided.
    Type: Application
    Filed: June 21, 2018
    Publication date: May 27, 2021
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Kyriacos C. NICOLAOU, Gabriel BELLAVANCE, Marek BUCHMAN, Kiran Kumar PULUKURI, Stephan RIGOL
  • Patent number: 11014816
    Abstract: Laser-induced graphene (LIG) and laser-induced graphene scrolls (LIGS) materials and, more particularly to LIGS, methods of making LIGS (such as from polyimide (PI)), laser-induced removal of LIG and LIGS, and 3D printing of LIG and LIGS using a laminated object manufacturing (LOM) process.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: May 25, 2021
    Assignee: William Marsh Rice University
    Inventors: James M. Tour, Duy X. Luong, Ajay Subramanian
  • Publication number: 20210142866
    Abstract: Provided herein are methods for encoding information in DNA molecules in a way that allows rapid and permanent erasure of information. As such, methods of erasing such information are also provided. Also provided are compositions that so encode information.
    Type: Application
    Filed: May 23, 2019
    Publication date: May 13, 2021
    Applicant: William Marsh Rice University
    Inventors: David Yu ZHANG, Alessandro PINTO, Jangwon KIM
  • Publication number: 20210130395
    Abstract: The present disclosure provides methods for proximity-induced antibody conjugation of target agents).
    Type: Application
    Filed: May 10, 2019
    Publication date: May 6, 2021
    Applicant: William Marsh Rice University
    Inventors: Han XIAO, Chenfei YU, Juan TANG
  • Patent number: 10995056
    Abstract: In some aspects, the present disclosure provides methods of aminating an aromatic compound comprising reacting an aminating agent with an aromatic compound in the presence of a rhodium catalyst. In some embodiments, the methods may comprise aminating an aromatic compound which contains multiple different functional groups. The methods described herein may also be used to create bicyclic system comprising reacting an intramolecular aminating agent with an aromatic ring to obtain a second ring containing a nitrogen atom. In another aspect, the methods described herein may also be used to create a cyclic aliphatic cyclic/poly cyclic amine system comprising a reacting an intramolecular aminating agent by insertion into a C(sp3)-H bond.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: May 4, 2021
    Assignees: The Board of Regents of the University of Texas System, William Marsh Rice University
    Inventors: John R. Falck, Mahesh P. Paudyal, László Kürti
  • Patent number: 10996060
    Abstract: A device, system, and methods are described to perform machine-learning camera-based indoor mobile positioning. The indoor mobile positioning may utilize inexact computing, wherein a small decrease in accuracy is used to obtain significant computational efficiency. Hence, the positioning may be performed using a smaller memory overhead at a faster rate and with lower energy cost than previous implementations. The positioning may not involve any communication (or data transfer) with any other device or the cloud, providing privacy and security to the device. A hashing-based image matching algorithm may be used which is cheaper, both in energy and computation cost, over existing state-of-the-art matching techniques. This significant reduction allows end-to-end computation to be performed locally on the mobile device.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: May 4, 2021
    Assignees: William Marsh Rice University, Seoul National University R&DB Foundation
    Inventors: Anshumali Shrivastava, Chen Luo, Krishna Palem, Yongshik Moon, Soonhyun Noh, Daedong Park, Seongsoo Hong
  • Patent number: 10985777
    Abstract: Real-world data may not be sparse in a fixed basis, and current high-performance recovery algorithms are slow to converge, which limits compressive sensing (CS) to either non-real-time applications or scenarios where massive back-end computing is available. Presented herein are embodiments for improving CS by developing a new signal recovery framework that uses a deep convolutional neural network (CNN) to learn the inverse transformation from measurement signals. When trained on a set of representative images, the network learns both a representation for the signals and an inverse map approximating a greedy or convex recovery algorithm. Implementations on real data indicate that some embodiments closely approximate the solution produced by state-of-the-art CS recovery algorithms, yet are hundreds of times faster in run time.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: April 20, 2021
    Assignee: William Marsh Rice University
    Inventors: Richard G. Baraniuk, Ali Mousavi
  • Patent number: 10947282
    Abstract: Embodiments of the invention are directed to Ubx-fusion molecules that maintain their mechanical strength and properties even after being fused with Ubx. Ubx fusions with VEGF and other growth factors, cell signaling proteins, and cell binding proteins can be used to induce angiogenesis. Ubx fibers and mesh, embedded within a tissue engineering scaffold, induce formation of vasculature within the scaffold. The presence of vasculature is necessary to provide oxygen and nutrients to other cells growing within the scaffold.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: March 16, 2021
    Assignees: The Texas A & M University System, William Marsh Rice University
    Inventors: Sarah Bondos, Kayla Bayless, Kathleen Matthews, Jan Patterson, Colette Abbey, David Howell, Hao-Ching Hsiao, Kelly Churion, Shang-Pu Tsai, Sandhya Ramasamy, Dustin Porterpan, Keira Northern
  • Patent number: 10920251
    Abstract: This invention describes a method of using microbial to produce fats, such as fatty acids and their derivatives, or products derived from the fatty acid synthesis cycle, such as hydroxyfatty acids, methyl ketones, and the like.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: February 16, 2021
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Ka-Yiu San, Zhilin Li, Xian Zhang
  • Patent number: 10913683
    Abstract: Provide is a cement ink for a cement ink for 3D printing (which also includes additive manufacturing) of 3D cement structures and materials. The cement ink includes an American Petroleum Institute (API) Class G cement, a nano-clay, a superplasticizer, a hydroxyethyl cellulose, and a defoamer. The nano-clay may be hydrophilic bentonite. The superplasticizer may be a polycarboxylate ether. The defoamer may be 2-ethyl-1-hexanol. Processes for forming the cement ink and printing 3D cement structures using the cement ink are also provided.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: February 9, 2021
    Assignees: Saudi Arabian Oil Company, William Marsh Rice University
    Inventors: Muhammad M Rahman, Seyed Mohammad Sajadi, Ashok Kumar, Peter J Boul, Carl Thaemlitz, Pulickel M Ajayan
  • Publication number: 20210023541
    Abstract: A multicomponent photocatalyst includes a reactive component optically, electronically, or thermally coupled to a plasmonic material. A method of performing a catalytic reaction includes loading a multicomponent photocatalyst including a reactive component optically, electronically, or thermally coupled to a plasmonic material into a reaction chamber; introducing molecular reactants into the reaction chamber; and illuminating the reaction chamber with a light source.
    Type: Application
    Filed: August 12, 2020
    Publication date: January 28, 2021
    Applicant: William Marsh Rice University
    Inventors: Nancy Jean Halas, Peter Nordlander, Hossein Robatjazi, Dayne Francis Swearer, Chao Zhang, Hangqi Zhao, Linan Zhou
  • Publication number: 20210024989
    Abstract: Provided herein are reagents and methods for simultaneously enriching many potential rare genetic variants at different genetic loci. The rare variants enriched can include single nucleotide polymorphisms (SNPs), single nucleotide variants, or small insertions and deletions. Embodiments of the invention include procedures for integration with downstream next generation sequencing (NGS) analysis. Embodiments of the invention include analysis of nonpathogenic SNPs for the determination of cell identity and detection of cell contamination using qPCR or NGS.
    Type: Application
    Filed: February 20, 2019
    Publication date: January 28, 2021
    Applicant: William Marsh Rice University
    Inventors: David Yu ZHANG, Ping SONG, Xi CHEN
  • Patent number: 10899773
    Abstract: In one aspect, the present invention provides novel derivatives of trioxacarin analogs of the formula (I) wherein the variables are as defined herein. The application also provides compositions, methods of treatment, and methods of synthesis thereof.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 26, 2021
    Assignee: William Marsh Rice University
    Inventors: Kyriacos C Nicolaou, Quan Cai
  • Patent number: 10900079
    Abstract: Compositions and methods for highly specific nucleic acid probes and primers are provided. The probe system comprises a complement strand and a protector stand that form a partially double-stranded probe. The reaction standard free energy of hybridization between the probe and target nucleic acid as determined by Expression 1 (?G°rxn=?G°t-TC??G°nh-PC+(?G°v-TC??G°h-PC)) is from about ?4 kcal/mol to about +4 kcal/mol. Alternatively, the reaction standard free energy of hybridization between the probe and target nucleic acid is determined by Expression 1 to be within 5 kcal/mol of the standard free energy as determined by Expression 2 (?R? ln(([P]0?[C]0)/[C]0)]), where the [P]0 term of Expression 2 equals the concentration of the protector strand and the [C]0 term of Expression 2 equals the concentration of the complement strand. In addition, a method for on-the-fly fine tuning of a reaction using the present probe is provided.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: January 26, 2021
    Assignee: William Marsh Rice University
    Inventors: David Yu Zhang, Juexiao Wang, Ruojia Wu
  • Patent number: 10889590
    Abstract: In one aspect, the present disclosure provides new analogs of uncialamycin. The present disclosure also provides novel synthetic pathways to obtaining uncialamycin and analogs thereof. Additionally, the present disclosure also describes methods of use of uncialamycin and analogs thereof. In another aspect, the present disclosure provides antibody-drug conjugates which may be used to treat cancer or another disease or disorder.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: January 12, 2021
    Assignees: William Marsh Rice University, The Scripps Research Institute, Bristol-Myers Squibb Company
    Inventors: Kyriacos C. Nicolaou, Min Lu, Debashis Mandal, Sanjeev Gangwar, Naidu S. Chowdari, Yam B. Poudel
  • Patent number: 10876035
    Abstract: Asphaltene produced during the production of hydrocarbons in an underground reservoir may be reduced and decomposed by introducing into the underground reservoir a fluid having a catalyst of from about 3 to about 7% Ni with a magnesium oxide support or a catalyst of from about 15 to about 25% tungsten oxide with a zirconium oxide support or a mixture thereof. The viscosity of heavy oil within the underground reservoir is reduced in the presence of the catalyst.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 29, 2020
    Assignees: Baker Hughes, a GE company, LLC, William Marsh Rice University
    Inventors: Sivaram Pradhan, Scott Wellington, Houman Shammai, Michael Wong
  • Patent number: 10874646
    Abstract: In one aspect, the present disclosure provides epothilone analogs of the formula (I) wherein the variables are as defined herein. In another aspect, the present disclosure also provides methods of preparing the compounds disclosed herein. In another aspect, the present disclosure also provides pharmaceutical compositions and methods of use of the compounds disclosed herein. Additionally, drug conjugates with cell targeting moieties of the compounds are also provided.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: December 29, 2020
    Assignee: William Marsh Rice University
    Inventors: Kyriacos C Nicolaou, Derek Rhoades, Yanping Wang, Sotirios Totokotsopoulos
  • Publication number: 20200399737
    Abstract: A process for extracting, recovering and recycling metals and materials from spent lithium ion batteries (LIB) that comprises the contacting battery waste products with a deep eutectic solvent, and leaching the metal from the battery waste product and extracting the metal into the deep eutectic solvent with heat and agitation. After the leaching and extracting, the process further includes recovering the dissolved metals ions from the deep eutectic solvent solution, followed by a step of regeneration of cathode materials.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 24, 2020
    Applicant: William Marsh Rice University
    Inventors: Mai K. Tran, Marco-Tulio F. Rodrigues, Ganguli Babu, Hemtej Gullapalli, Pulickel M. Ajayan
  • Publication number: 20200395497
    Abstract: An infrared photodetector includes: a p-type and highly-doped silicon substrate; a metal structure disposed on the silicon substrate; a first electric contact to the silicon substrate; and a second electric contact to the metal structure.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 17, 2020
    Applicant: William Marsh Rice University
    Inventors: Bob Zheng, Hangqi Zhao, Benjamin Cerjan, Mehbuba Tanzid, Peter Nordlander, Nancy J. Halas
  • Patent number: 10858630
    Abstract: The present disclosure provide viral compositions and methods for modulating adeno-associated virus properties including transduction efficiency, virus capsid assembly, viral genome packaging, capsid stability and intracellular processing. Engineered adeno-associated viruses with modifications in the N-terminal region of the capsid proteins VP1 or VP2 are provided which have varying effects on viral properties including transduction efficiency. Corresponding nucleic acids and amino acids are provided.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: December 8, 2020
    Assignee: William Marsh Rice University
    Inventors: Michelle Ho, Junghae Suh, Momona Yamagami, Veronica Gough, Byunguk Kang