Abstract: An energy storage device includes: a case having a bottom wall and a ceiling wall, a front wall and a rear wall having areas smaller than an area of the ceiling wall respectively, and a pair of side walls having areas larger than the area of the ceiling wall respectively; a stacked electrode assembly accommodated in the inside of the case, and having a plurality of positive electrode plates and a plurality of negative electrode plates having a plate shape and stacked to each other with a separator interposed between the positive electrode plate and the negative electrode plate, and a positive electrode tab and a negative electrode tab extending from the positive electrode plates and the negative electrode plates toward the front wall; and an external terminal mounted on the front wall and electrically connected with the positive electrode tab or the negative electrode tab.
Type:
Grant
Filed:
June 18, 2018
Date of Patent:
July 12, 2022
Assignees:
GS YUASA INTERNATIONAL LTD., ROBERT BOSCH GMBH
Abstract: A pressure generating device for a vehicle braking system includes a motor with a worm attached or formed on its motor shaft; a worm gear which, with the aid of a rotation of the motor shaft, can be made to carry out a rotary movement about a rotary axis oriented at an incline to the motor shaft; and a piston that is adjustable at least with the aid of the rotary movement of the worm gear, where a first spindle nut is attached or formed on the worm gear, and at least a first spindle is attached or formed on the piston, the first spindle being adjustable along the rotary axis with the aid of the rotary movement of the worm gear oriented about the rotary axis in such a way that the piston is also adjustable along the rotary axis or in parallel to the rotary axis.
Abstract: An operating method is for a redundant sensor arrangement of a vehicle system. The sensor arrangement includes two controllers and multiple sensors. Individual sensors of the multiple sensors, in a normal mode of the vehicle system, are each coupled to a controller embodied as a primary controller and, in an emergency mode of the vehicle system, are each coupled to a controller embodied as a secondary controller and are supplied with power. The corresponding controller coupled to the sensors receives and evaluates signals from the individual sensors. Initialization of the sensor arrangement involves an operating voltage being applied to both controllers and a check on the sensor arrangement being performed. The sensors, in a first checking step, are coupled to a first controller and are checked by the latter and decoupled from a second controller, and the first controller subsequently hands over the sensors to the second controller.
Abstract: The invention obtains a controller and a control method capable of appropriately assisting with an operation by a driver while preventing a motorcycle from falling over. In the controller and the control method according to the invention, in a control mode to make the motorcycle perform an automatic cruise deceleration operation, automatic deceleration that is deceleration of the motorcycle generated by the automatic cruise deceleration operation is controlled in accordance with a change rate of a state amount that is related to posture of the motorcycle during turning travel.
Abstract: A method for classifying a relevance of an object situated in a surrounding environment of a motor vehicle that includes an environmental sensor, with regard to a collision with the motor vehicle. The method includes: receiving measurement signals representing a radial distance, measured by the environmental sensor, of the object relative to the environmental sensor, a radial relative velocity, measured by the environmental sensor, of the object relative to the environmental sensor, and a measured own velocity of the motor vehicle; receiving dimension signals representing the dimensions of the motor vehicle; calculating whether the motor vehicle can collide with the object based on the received measurement signals and on the received dimension signals; outputting a result signal that represents a result of the calculation of whether the motor vehicle can collide with the object to classify the relevance of the object with regard to a collision with the motor vehicle.
Abstract: A microfluidic device for analyzing samples includes at least two fluidic pathways for receiving samples and at least one capture area. The at least one capture area is configured for a detection unit for measuring light, and is configured to capture light emitted from samples in the at least two fluidic pathways, across the capture area.
Abstract: The invention relates to a supply module (10) for conveying an operating/auxiliary agent capable of freezing for the exhaust gas aftertreatment of an internal combustion engine and for heating a reservoir holding the operating/auxiliary agent capable of freezing. The supply module (10) comprises a main heater (18) and an auxiliary heater (30), which are electrically contacted on a supporting body (24). A pot wall (52) of a heating pot (50) comprises electrical contacts (62) of the main heater (18) and electrical contacts (60) of the auxiliary heater (30).
Abstract: The invention relates to a discharge circuit (10) for discharging a high-voltage DC link (20) of a vehicle. The high-voltage DC link (20) comprises a DC link capacitor (30) to which a high voltage (U_H) is applied. The discharge circuit (10) is designed to adjust the level of the discharge current (I_D) provided by the discharge circuit (10) depending on the high voltage (U_H).
Abstract: The invention obtains a controller and a control method capable of appropriately assisting with an operation by a driver while preventing a motorcycle from falling over. In the controller and the control method according to the invention, in a control mode to make the motorcycle perform an automatic cruise deceleration operation, automatic deceleration that is deceleration of the motorcycle generated by the automatic cruise deceleration operation is controlled in accordance with a lean angle of the motorcycle.
Abstract: The invention relates to a spur gear (1) for a transmission (35) for a brushless electric motor (10), having a toothed portion (32), with a receiving bore (38) formed in the region of the toothed portion (32) in order to receive a rotor shaft (30), and having a signal generating portion (34) rotationally fixed to the toothed portion (32) with multiple magnetic field generating regions (48), which are adapted to interact with a magnetic field sensing element (50) especially a Hall element, in order to detect the rotary angle position of the spur gear (1) as it turns about an axis of rotation (20).
Abstract: A method of applying a coating to a flow field plate of a fuel cell. The method includes applying a solution including a metal-containing precursor and a solvent to at least a portion of a surface of a flow field plate, and evaporating the solvent to form a coating on the at least the portion of the surface of the flow field plate.
Type:
Grant
Filed:
May 31, 2019
Date of Patent:
July 5, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Soo Kim, Mordechai Kornbluth, Jonathan Mailoa, Lei Cheng, Georgy Samsonidze, Boris Kozinsky, Nathan Craig
Abstract: The present invention relates to a meshing plate (10) of a steering column energy absorbing device, comprising a base plate (9) formed of a first material and comprising a row of first meshing shapes (91) extending along a longitudinal axis (A); the meshing plate comprises lateral protrusions (11) overmoulded onto said base plate so that each comprises a rear abutment surface (92) and/or a lateral bearing surface (93).
Type:
Grant
Filed:
February 27, 2019
Date of Patent:
July 5, 2022
Assignee:
ROBERT BOSCH AUTOMOTIVE STEERING VENDÔME
Inventors:
Nicolas Genet, Stéphane Thebault, Jérémy Renard
Abstract: The present invention relates to a method of cooperatively coordinating future driving maneuvers of a vehicle with fellow maneuvers of at least one fellow vehicle, wherein a fellow data packet is received from the fellow vehicle, in which a fellow trajectory set of a fellow reference trajectory is contained, a trajectory from a trajectory set for the vehicle is selected as a reference trajectory for the vehicle using the fellow reference trajectory, wherein a trajectory which is collision-free towards the fellow reference trajectory is selected, the trajectories of the trajectory set are rated using limit trajectories, and at least one cooperation trajectory is selected from the trajectories of the trajectory set using the reference effort value, wherein a data packet containing the reference trajectory and the cooperation trajectory is transmitted to the fellow vehicle.
Type:
Grant
Filed:
April 18, 2019
Date of Patent:
July 5, 2022
Assignees:
ROBERT BOSCH GMBH, CONTINENTAL TEVES AG & CO. OHG
Inventors:
Hendrik Fuchs, Florian Wildschütte, Thomas Michalke, Ignacio Llatser Marti, Maxim Dolgov, Sebastian Strunck, Jonas Schönichen, Thomas Grotendorst
Abstract: The invention obtains a controller and a control method capable of improving safety by an automatic deceleration operation while preventing a motorcycle from falling over. The invention also obtains a brake system that includes such a controller. In the controller, the control method, and the brake system according to the invention, a control mode is initiated in response to trigger information that is generated in accordance with peripheral environment of the motorcycle, and the control mode makes the motorcycle, which includes a damping device damping kinetic energy, execute the automatic deceleration operation. In the control mode, the automatic deceleration operation is executed in a state where a damping rate of the damping device is increased to be higher than that immediately before initiation of the control mode.
Abstract: The invention relates to a fuel cell (2) comprising at least one membrane/electrode unit (10) comprising a first electrode and a second electrode, which electrodes are separated from one another by a membrane, and comprising at least one polar plate (40) which comprises a first distribution region (50) for distributing a fuel to the first electrode and a second distribution region (60) for distributing an oxidation agent to the second electrode. The first electrode and the second electrode of the at least one membrane electrode unit (10) are electrically connected by means of a conductor (90). The invention also relates to a fuel cell stack (5) which comprises a plurality of the claimed fuel cells (2).
Abstract: A system (10) for testing a battery cell (1) by creating at least one of the effects of internal short circuit within the cell (1) with at least one cathode, at least one anode, at least one sensor (3) and at least one conductive heating element (2), comprising at least one resistive heat element (5), wherein at least the resistive heat element (5) is assembled within the cell (1) for simulating an internal short circuit.
Abstract: A terminal device (200) is provided for a sensor (S) and/or actuator (A) of an industrial machine, wherein the terminal device (200) comprises at least one communication module (C) and an antenna (A), and wherein the terminal device (200) is set up to determine an initial transmission power as a function of a previously determined relative position of the terminal device (200) to at least one master unit and/or as a function of a previously determined estimated value for the transmission power, and to transmit a radio signal with the determined initial transmission power via an uplink radio channel.
Type:
Grant
Filed:
May 1, 2020
Date of Patent:
July 5, 2022
Assignee:
Robert Bosch GmbH
Inventors:
Johannes Von Hoyningen-Huene, Monique Duengen
Abstract: A method of forming a fuel cell catalyst system, the method includes providing an anticorrosive, conductive catalyst support material having oxygen vacancies and a formula (I): MgTi2O5-???(I), where ? is any number between 0 and 3 optionally including a fractional part denoting the oxygen vacancies, coating the catalyst support material with a polymeric film, attaching a catalyst material onto the polymeric film, removing the polymeric film, and providing additional material onto the support material to increase physical, electrical, and/or mechanical contact between the catalyst material and the catalyst support material.
Type:
Grant
Filed:
December 23, 2019
Date of Patent:
July 5, 2022
Assignee:
ROBERT BOSCH GMBH
Inventors:
Jonathan Mailoa, Soo Kim, Boris Kozinsky
Abstract: A method for synchronizing networks is disclosed. A first wired communication system having a first time base is set up in a first network. A second wired communication system having a second time base is set up in a second network. The first network and the second network are connected to a wireless communication system via a first translation unit and a second translation unit, respectively. The first translation unit and the second translation unit are synchronized to one another according to a third time base of the wireless communication system independently of the first time base and the second time base. A third synchronization message is transmitted from the first translation unit to the second translation unit. A transmission time for the third synchronization message in the third time base is determined and is used to synchronize the second time base to the first time base.
Abstract: A distribution valve comprises: a housing, and a spool in the housing, the spool mounted in a valve chamber so as to be rotatable along an axial axis, and the spool comprising a sidewall comprising a first spheroidal segment and a second spheroidal segment, a spool first port in the first spheroidal segment, and a spool second port in the second spheroidal segment; and an intermediate member mounted between the housing and the spool and fixed relative to the housing and in sliding contact with the sidewall of the spool in a sealed manner, wherein a first valve port is defined when the spool first port and an intermediate first port overlap, and a second valve port is defined when the spool second port and an intermediate second port overlap, wherein a degree of opening of the valve ports changes as the spool rotates relative to the housing.