Patents Assigned to SENSOR
  • Patent number: 9339571
    Abstract: A solution for disinfecting a screen of an item using ultraviolet radiation is provided. The solution can provide an electronic device including a screen utilized by a user of the electronic device. The screen can be an ultraviolet transparent screen that covers at least some of the internal portion of the electronic device and a set of ultraviolet radiation sources can be located adjacent to the transparent screen. The set of ultraviolet radiation sources can be configured to generate ultraviolet radiation directed towards an external surface of the ultraviolet transparent screen. The electronic device can further include a monitoring and control system, which can manage the ultraviolet radiation generation by monitoring a set of attributes relating to the external surface of the screen and controlling, based on the monitoring, ultraviolet radiation directed at the external surface of the screen.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: May 17, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Yuri Bilenko, Alexander Dobrinsky, Michael Shur
  • Publication number: 20160128526
    Abstract: A solution for cleaning and/or sterilizing one or more surfaces in a bathroom is provided. The sterilization can be performed using ultraviolet sources, which can emit ultraviolet radiation directed onto the surface(s). The cleaning can be performed using a fluid, such as water, that is flowed over the surface(s). The surface(s) can include at least a seat of a toilet and/or other surfaces associated with the toilet.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 12, 2016
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9337387
    Abstract: A profiled surface for improving the propagation of radiation through an interface is provided. The profiled surface includes a set of large roughness components providing a first variation of the profiled surface having a characteristic scale approximately an order of magnitude larger than a target wavelength of the radiation. The set of large roughness components can include a series of truncated shapes. The profiled surface also includes a set of small roughness components superimposed on the set of large roughness components and providing a second variation of the profiled surface having a characteristic scale on the order of the target wavelength of the radiation.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: May 10, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20160127156
    Abstract: Provided is an adaptive equalization processing circuit with which an adaptive equalization process converges in a stable manner without reducing the transmission efficiency. This adaptive equalization processing circuit is characterized by being equipped with: a demodulation means that demodulates a received signal, and generates and outputs a training signal; an adaptive equalization processing means that uses a tap coefficient (generated using the received signal or the training signal) to perform an adaptive equalization process for removing waveform distortion in the received signal, and then outputs an equalization output signal; and a selection means that selects the training signal when the adaptive equalization processing means is in a non-convergent state, and inputs the training signal to the adaptive equalization processing means.
    Type: Application
    Filed: May 23, 2014
    Publication date: May 5, 2016
    Applicant: NEC Network and Sensor System, Ltd.
    Inventor: Noriaki SUMITA
  • Patent number: 9326713
    Abstract: This invention relates to a system and method that can quickly and accurately detect and measure ethyl alcohol in the blood of a motorized vehicle driver transdermally and non-invasively within minutes of ethanol consumption and in the presence of interferents. The system includes an array of sensors embedded into the steering mechanism of a motorized vehicle, a data base of patterns produced through empirical testing of various analytes in various combinations and concentrations, neural net based pattern recognition algorithms to ascertain the driver's transdermal alcohol concentration and a database derived from human testing, correlating the driver's transdermal alcohol concentration with the driver's blood alcohol concentration. The detection system is integrated with a motor vehicle decision module which can prevent the operation of a motorized vehicle by a driver whose BAC exceeds a preset limit.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: May 3, 2016
    Assignee: Sober Steering Sensors Canada Inc.
    Inventors: John Carroll, Dennis Bellehumeur, Catherine Carroll
  • Patent number: 9330906
    Abstract: A semiconductor structure, such as a group III nitride-based semiconductor structure is provided. The semiconductor structure includes a cavity containing semiconductor layer. The cavity containing semiconductor layer can have a thickness greater than two monolayers and a multiple cavities. The cavities can have a characteristic size of at least one nanometer and a characteristic separation of at least five nanometers.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: May 3, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Jinwei Yang, Wenhong Sun, Rakesh Jain, Michael Shur, Remigijus Gaska
  • Patent number: 9329173
    Abstract: An aptamer-based solid-state electrochemical biosensor for label-free detection of Salmonella enterica serovars utilizing immobilized aptamers. The device is realized by forming a matrix array of parallel capacitors, thus allowing the realization of low-cost, portable, fully integrated devices. Protein-aptamer binding modulates the threshold voltage of a circuit, changing the impedance (capacitance) of the circuit. This circuit is further characterized by an electrode coded with a p-Si substrate, enhancing the affinity between the Salmonella outer membrane proteins (OMPs) and the aptamer. An aptamer embedded detection plate is configured within a testing lid device that fits a standard, commercially available polymer specimen jar. A sample is mixed with broth for incubation and cultivation of any present Salmonella bacteria to obtain acceptable concentration of the pathogen for testing. The information obtained can then be transmitted by wireless network.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: May 3, 2016
    Assignee: Sensor-Kinesis Corporation
    Inventors: Yehoshua Shachar, Winston Wu, Thomas Chen, Leslie Farkas, Brett Jordan, Paladin Luboff, Herwin Chan, Kyle Zimmerman
  • Patent number: 9331244
    Abstract: A semiconductor layer including a plurality of inhomogeneous regions is provided. Each inhomogeneous region has one or more attributes that differ from a material forming the semiconductor layer. The inhomogeneous regions can include one or more regions configured based on radiation having a target wavelength. These regions can include transparent and/or reflective regions. The inhomogeneous regions also can include one or more regions having a higher conductivity than a conductivity of the radiation-based regions, e.g., at least ten percent higher.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: May 3, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S Shatalov, Alexander Dobrinsky, Alexander Lunev, Rakesh Jain, Jinwei Yang, Michael Shur, Remigijus Gaska
  • Publication number: 20160118534
    Abstract: A device comprising a semiconductor layer including a plurality of compositional inhomogeneous regions is provided. The difference between an average band gap for the plurality of compositional inhomogeneous regions and an average band gap for a remaining portion of the semiconductor layer can be at least thermal energy. Additionally, a characteristic size of the plurality of compositional inhomogeneous regions can be smaller than an inverse of a dislocation density for the semiconductor layer.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 28, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Rakesh Jain, Maxim S. Shatalov, Alexander Dobrinsky, Jinwei Yang, Remigijus Gaska, Mikhail Gaevski
  • Publication number: 20160118535
    Abstract: A contact to a semiconductor layer in a light emitting structure is provided. The contact can include a plurality of contact areas formed of a metal and separated by a set of voids. The contact areas can be separated from one another by a characteristic distance selected based on a set of attributes of a semiconductor contact structure of the contact and a characteristic contact length scale of the contact. The voids can be configured to increase an overall reflectivity or transparency of the contact.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 28, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Lunev, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20160118536
    Abstract: A semiconductor layer including a plurality of inhomogeneous regions is provided. Each inhomogeneous region has one or more attributes that differ from a material forming the semiconductor layer. The inhomogeneous regions can include one or more regions configured based on radiation having a target wavelength. These regions can include transparent and/or reflective regions. The inhomogeneous regions also can include one or more regions having a higher conductivity than a conductivity of the radiation-based regions, e.g., at least ten percent higher. In one embodiment, the semiconductor layer is used to form an optoelectronic device.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 28, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Alexander Lunev, Rakesh Jain, Jinwei Yang, Michael Shur, Remigijus Gaska
  • Publication number: 20160114186
    Abstract: An adhesive device with an ultraviolet element is disclosed. The adhesive device with an ultraviolet element can be used to provide a treatment of a surface of an object. The treatment can include cleaning, disinfection, sterilization and sanitization. The adhesive device with an ultraviolet element can also be used as a self-adhesive bandage.
    Type: Application
    Filed: October 28, 2015
    Publication date: April 28, 2016
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20160114067
    Abstract: A device including a flexible substrate and an ultraviolet radiation system is disclosed. The ultraviolet radiation system can include at least one ultraviolet radiation source configured to emit ultraviolet radiation towards a surface to be disinfected, an ultraviolet transparent component configured to focus the ultraviolet radiation, and a control system configured to control the at least one ultraviolet radiation source. The device can include a hand article, such as a glove.
    Type: Application
    Filed: October 28, 2015
    Publication date: April 28, 2016
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20160118531
    Abstract: An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The p-type contact layer and electron blocking layer can be doped with a p-type dopant. The dopant concentration for the electron blocking layer can be at most ten percent the dopant concentration of the p-type contact layer. A method of designing such a heterostructure is also described.
    Type: Application
    Filed: November 18, 2015
    Publication date: April 28, 2016
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Rakesh Jain, Maxim S. Shatalov, Jinwei Yang, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9324560
    Abstract: A patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers, is provided. The patterned surface can include a set of substantially flat top surfaces and a plurality of openings. Each substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the openings can have a characteristic size between approximately 0.1 micron and five microns. One or more of the substantially flat top surfaces can be patterned based on target radiation.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: April 26, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Rakesh Jain, Jinwei Yang, Michael Shur, Remigijus Gaska
  • Patent number: 9325920
    Abstract: Described herein is a method and sensor of processing time-of-flight (TOF) signals in a TOF camera system including an illumination unit and an imaging sensor. The method comprises illuminating the scene with light at a first frequency, detecting reflected light from at least one object in the scene at the first frequency, and determining a phase measurement using I and Q values. In addition, the scene is illuminated with light at a second frequency, the second frequency being 2?n of the first frequency where n=1, 2, . . . , etc., and the signs of I and Q values for both the first and second frequencies is used to determine the presence of aliasing in the phase measurement so that it can be corrected. The phase measurement is then corrected for aliasing and the effective range of the TOF camera system is extended by multiples of 2n. In addition, relative signal strength needs to be considered in accordance with the reflectivity of objects within the scene.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: April 26, 2016
    Assignee: Softkinetics Sensors NV
    Inventors: Daniel Van Nieuwenhove, Tomas Van Den Hauwe, Reimer Grootjans, Ward Van Der Tempel
  • Publication number: 20160111505
    Abstract: A semiconductor device with a breakdown preventing layer is provided. The breakdown preventing layer can be located in a high-voltage surface region of the device. The breakdown preventing layer can include an insulating film or a low conductive film with conducting elements embedded therein. The conducting elements can be arranged along a lateral length of the insulating film or the low conductive film. The conducting elements can vary in at least one of composition, doping, conductivity, size, thickness, shape, and distance from the device channel along a lateral length of the insulating film or the low conductive film, or in a direction that is perpendicular to the lateral length.
    Type: Application
    Filed: December 28, 2015
    Publication date: April 21, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20160111497
    Abstract: A device having a channel with multiple voltage thresholds is provided. The channel can include a first section located adjacent to a source electrode, which is a normally-off channel and a second section located between the first section and a drain electrode, which is a normally-on channel. The device can include a charge-controlling electrode connected to the source electrode, which extends from the source electrode over at least a portion of the second section of the channel. During operation of the device, a potential difference between the charge-controlling electrode and the channel can control the on/off state of the normally-on section of the channel.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 21, 2016
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20160111618
    Abstract: A heterostructure for use in fabricating an optoelectronic device with improved thermal management is provided. The heterostructure can include a plurality of epitaxially grown layers including an n-type contact layer, an active layer, and a p-type contact layer. N-type and p-type electrodes for the n-type contact layer and p-type contact layer, respectively, can be embedded within an electrically insulating, thermally conductive semiconductor layer that is adjacent to the epitaxially grown layers. The electrically insulating, thermally conductive semiconductor layer can provide a larger lateral area for extracting heat generated by the active layer, so that there is improved thermal management within the device.
    Type: Application
    Filed: May 7, 2015
    Publication date: April 21, 2016
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Michael Shur, Maxim S. Shatalov, Alexander Dobrinsky, Remigijus Gaska
  • Publication number: 20160106873
    Abstract: A system capable of detecting and/or sterilizing surface(s) of an object using ultraviolet radiation is provided. The system can include a disinfection chamber and/or handheld ultraviolet unit, which includes ultraviolet sources for inducing fluorescence in a contaminant and/or sterilizing a surface of an object. The object can comprise a protective suit, which is worn by a user and also can include ultraviolet sources for disinfecting air prior to the air entering the protective suit. The system can be implemented as a multi-tiered system for protecting the user and others from exposure to the contaminant and sterilizing the protective suit after exposure to an environment including the contaminant.
    Type: Application
    Filed: October 15, 2015
    Publication date: April 21, 2016
    Applicant: SENSOR ELECTRONIC TECHNOLOGY, INC.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska, Timothy James Bettles