Patents Assigned to SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCE
  • Patent number: 9209387
    Abstract: A phase change memory and its fabrication method are provided. A bottom electrode structure is provided through a substrate. A mask layer is formed on the substrate and the bottom electrode structure. A first opening is formed in the mask layer to expose the bottom electrode structure. A spacer is formed on sidewalls and bottom surface portions of the first opening to expose a surface portion of the bottom electrode structure. The first opening including the spacer therein has a bottom width less than a top width. A heating layer is formed at least on the surface portion of the bottom electrode structure exposed by the spacer. A phase change layer is formed on the heating layer to completely fill the first opening. A top electrode is formed on the phase change layer and the mask layer.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: December 8, 2015
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCE
    Inventor: Ying Li
  • Patent number: 9190596
    Abstract: A three-dimensional thermoelectric energy harvester and a fabrication method thereof. Low-resistivity silicon is etched to form a plurality of grooves and silicon columns between the grooves, and an insulating layer is formed on a surface of the groove, and thermoelectric columns are fabricated by using a thin-film deposition technique, so that the thermoelectric column and a neighboring silicon column form a thermocouple pair; and then, a metal wiring is fabricated by processes such as etching and deposition, followed by thinning of the substrate and bonding of the supporting substrates, thereby completing fabrication of the three-dimensional thermoelectric energy harvester. Fabrication of the thermocouple pair structure by one thin-film deposition process simplifies the fabrication process. The thermocouple pair using silicon ensures a high Seebeck coefficient. The use of vertical thermocouple pairs having a column structure improves the mechanical stability of the thermoelectric energy harvester.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: November 17, 2015
    Assignee: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY of SCIENCE
    Inventors: Dehui Xu, Bin Xiong, Yuelin Wang
  • Patent number: 9134361
    Abstract: The present invention provides a method for determining BSIMSOI4 Direct Current (DC) model parameters, where a plurality of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices of a body leading-out structure and of different sizes, and a plurality of MOSFET devices of a floating structure and of different sizes are provided; Id-Vg-Vp, Id/Ip-Vd-Vg, Ig-Vg-Vd, Ig-Vp, Ip-Vg-vd, Is/Id-Vp, and Id/Ip-Vp-Vd properties of all the MOSFET devices of a body leading-out structure, and Id-Vg-Vp, Id-Vd-Vg, and Ig-Vg-Vd properties of all the MOSFET devices of a floating structure are measured; electrical property curves without a self-heating effect of each MOSFET device of a body leading-out structure and each MOSFET device of a floating structure are obtained; and then DC parameters of a BSIMSOI4 model are successively extracted according to specific steps.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: September 15, 2015
    Assignee: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Jing Chen, Qingqing Wu, Jiexin Luo, Zhan Chai, Xi Wang
  • Publication number: 20150194338
    Abstract: The present invention provides a method for preparing an ultra-thin material on insulator through adsorption by a doped ultra-thin layer. In the method, first, an ultra-thin doped single crystal film and an ultra-thin top film (or contains a buffer layer) are successively and epitaxially grown on a first substrate, and then a high-quality ultra-thin material on insulator is prepared through ion implantation and a bonding process. A thickness of the prepared ultra-thin material on insulator ranges from 5 nm to 50 nm. In the present invention, the ultra-thin doped single crystal film adsorbs the implanted ion, and a micro crack is then formed, so as to implement ion-cut; therefore, the roughness of a surface of a ion-cut material on insulator is small.
    Type: Application
    Filed: September 25, 2012
    Publication date: July 9, 2015
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Zengfeng Di, Da Chen, Jiantao Bian, Zhongying Xue, Miao Zhang
  • Patent number: 8947924
    Abstract: A data readout circuit of phase change memory, relating to one or more phase change memory cells, wherein each phase change memory cell is connected to the control circuit by bit line and word line; said data readout circuit comprises: a clamp voltage generating circuit, used to generate a clamp voltage; a precharge circuit, used to fast charge bit line under the control of a clamp voltage; a clamped current generating circuit, used to generate a clamped current to keep bit line at clamped state under the control of a clamp voltage; a clamped current operation circuit, used to perform subtraction and multiplication on clamped current to increase the difference of clamped current between high resistance state and low resistance state; a sense amplifier circuit, used to compare the operated clamped current and the reference current and output the readout result.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: February 3, 2015
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xi Li, Houpeng Chen, Zhitang Song, Daolin Cai
  • Patent number: 8937354
    Abstract: The present invention discloses a PD SOI device with a body contact structure. The active region of the PD SOI device includes: a body region; a gate region, which is inverted-L shaped, formed on the body region; a N-type source region and a N-type drain region, formed respectively at the two opposite sides of the anterior part the body region; a body contact region, formed at one side of the posterior part of the body region, which is side-by-side with the N-type source region; and a first silicide layer, formed on the body contact region and the N-type source region, which is contact to both of the body contact region and the N-type source region. The body contact region of the device is formed on the border of the source region and the leading-out terminal of the gate electrode.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: January 20, 2015
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Jing Chen, Qingqing Wu, Jiexin Luo, Xiaolu Huang, Xi Wang
  • Patent number: 8920684
    Abstract: The present invention discloses an Al—Sb—Te phase change material used for PCM and fabrication method thereof. Said phase change material, which can be prepared by PVD, CVD, ALD, PLD, EBE, and ED, is a mixture of three elements aluminum (Al), antimony (Sb) and tellurium (Te) with a general formula of Alx(SbyTe1)1-x, where 0<x?0.85, 0.67?y?7. Said material is electrically driven from outside. By adjusting the content of three elements in the mixture, storage materials with different crystallization temperatures, melting temperatures and activation energies of crystallization can be achieved. Any two elements of aluminum, antimony and tellurium can be bonded to each other, so the adjustability is very high, maintaining the phase change properties in a wide range.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: December 30, 2014
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Cheng Peng, Liangcai Wu, Feng Rao, Zhitang Song, Bo Liu, Xilin Zhou, Min Zhu
  • Patent number: 8900986
    Abstract: A method to realize flux free indium bumping process includes several steps including substrate metallization, contact holes opening, underbump metallization (UBM) layer thickening, indium bump preparation and Ag layer coating. The method can be used in the occasion for some special application, e.g., the packaging of the photoelectric chip (with optical lens), MEMS and biological detection chip, where the usage of flux is prohibited.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: December 2, 2014
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Qiuping Huang, Le Luo, Gaowei Xu, Yuan Yuan
  • Patent number: 8877608
    Abstract: The present invention provides a method for preparing a GOI chip structure, where, in the method, first, a SiGe on insulator (SGOI) chip structure is made by using a SMART CUT technology, and then, germanium condensation technology is performed on the SGOI chip structure, so as to obtain a GOI chip structure. Because the SGOI made by the Smart-Cut technology basically has no misfit dislocation in an SGOI/BOX interface, the threading dislocation density of the GOI is finally reduced. A technique of the present invention is simple, the high-quality GOI chip structure can be implemented, and the germanium condensation technology is greatly improved. An ion implantation technology and an annealing technology are quite mature techniques in the current semiconductor industry, so that such a preparation method greatly improves the possibility of wide use of the germanium concentration technology in the semiconductor industry.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: November 4, 2014
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Zengfeng Di, Lin Ye, Zhongying Xue, Miao Zhang
  • Patent number: 8853814
    Abstract: A miniature thermoelectric energy harvester and a fabrication method thereof. Annular grooves are fabricated on a low-resistivity silicon substrate to define silicon thermoelectric columns, an insulating layer is fabricated on the annular grooves, a thermoelectric material is filled in the annular grooves to form annular thermoelectric columns, and then metal wirings, passivation layers and supporting substrates are fabricated, thereby completing the fabrication process. The silicon thermoelectric column using a silicon base material simplifies the fabrication process. The fabrication of the thermocouple structure is one thin-film deposition process, which simplifies the process. The use of silicon as a component of the thermocouple has a high Seebeck coefficient. The use of vertical thermocouples improves the stability. Since the thermocouple structure is bonded to the upper supporting substrate and lower supporting substrate by wafer-level bonding, the fabrication efficiency is improved.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: October 7, 2014
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Dehui Xu, Bin Xiong, Yuelin Wang
  • Publication number: 20140199825
    Abstract: A silicon/germanium (SiGe) heterojunction Tunnel Field Effect Transistor (TFET) and a preparation method thereof are provided, in which a source region of a device is manufactured on a silicon germanium (SiGe) or Ge region, and a drain region of the device is manufactured in a Si region, thereby obtaining a high ON-state current while ensuring a low OFF-state current. Local Ge oxidization and concentration technique is used to implement a Silicon Germanium On Insulator (SGOI) or Germanium On Insulator (GOI) with a high Ge content in some area. In the SGOI or GOI with a high Ge content, the Ge content is controllable from 50% to 100%. In addition, the film thickness is controllable from 5 nm to 20 nm, facilitating the implementation of the device process. During the oxidization and concentration process of the SiGe or Ge and Si, a SiGe heterojunction structure with a gradient Ge content is formed between the SiGe or Ge and Si, thereby eliminating defects.
    Type: Application
    Filed: September 19, 2012
    Publication date: July 17, 2014
    Applicant: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Jiantao Bian, Zhongying Xue, Zengfeng Di, Miao Zhang
  • Patent number: 8749225
    Abstract: The present invention provides a power measurement apparatus and method for a pulsed terahertz quantum-cascade laser (THz QCL). The apparatus includes a light source part, a light path part, and a detection part. Terahertz light emitted by a THz QCL reaches a terahertz quantum-well photodetector (THz QWP) through the measurement apparatus, and is absorbed to generate a corresponding current signal. A signal processing circuit extracts a voltage signal from the current signal, amplifies the voltage signal, and inputs the amplified voltage signal to an oscilloscope for reading and displaying. According to a responsivity of the THz QWP at a lasing frequency of the laser, the measurement of the output power of the pulsed THz QCL is acquired.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: June 10, 2014
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Zhiyong Tan, Juncheng Cao, Yingjun Han, Zhen Chen
  • Patent number: 8710549
    Abstract: A SOI MOS device for eliminating floating body effects and self-heating effects are disclosed. The device includes a connective layer coupling the active gate channel to the Si substrate. The connective layer provides electrical and thermal passages during device operation, which could eliminate floating body effects and self-heating effects. An example of a MOS device having a SiGe connector between a Si active channel and a Si substrate is disclosed in detail and a manufacturing process is provided.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 29, 2014
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science
    Inventors: Xiaolu Huang, Jing Chen, Xi Wang, Deyuan Xiao
  • Patent number: 8667440
    Abstract: A calibration method for a device using TCAD to emulation SOI field effect transistor, where process emulation MOS device structures with different channel lengths Lgate are obtained by establishing a TCAD process emulation program; the process emulation MOS device structures are calibrated according to a TEM test result, a SIMS test result, a CV test result, a WAT test result, and a square resistance test result of an actual device, so as to complete TCAD emulation calibration of key electrical parameters of an SOI field effect transistor. Thereby, providing effective guidance for research, development and optimization of a new process flow are realized.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 4, 2014
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Zhan Chai, Jing Chen, Jiexin Luo, Qingqing Wu, Xi Wang
  • Patent number: 8633090
    Abstract: A method for forming an edge-chamfered substrate with a buried insulating layer is provided, which comprises the following steps: providing a first substrate (S10); forming an etching mask layer on surfaces of the first substrate, wherein said etching mask layer is formed on the whole surfaces of the first substrate (S11); chamfering a glazed surface of the first substrate and the etching mask layer thereon by the edge grinding (S12); by rotary etching, etching the first substrate which is exposed by the edge grinding on the etching mask layer (S13); providing a second substrate (S14); and bonding the first substrate to the second substrate with a buried insulating layer (S15). The method avoids the edge collapses and the changes of the warp degree in subsequent processes.
    Type: Grant
    Filed: July 10, 2010
    Date of Patent: January 21, 2014
    Assignees: Shanghai Simgui Technology Co., Ltd., Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xiang Wang, Xing Wei, Miao Zhang, Chenglu Lin, Xi Wang
  • Patent number: 8629029
    Abstract: The present invention discloses a vertical SOI bipolar junction transistor and a manufacturing method thereof. The bipolar junction transistor includes an SOI substrate from down to up including a body region, a buried oxide layer and a top silicon film; an active region located in the top silicon film formed by STI process; a collector region located in the active region deep close to the buried oxide layer formed by ion implantation; a base region located in the active region deep close to the top silicon film formed by ion implantation; an emitter and a base electrode both located over the base region; a side-wall spacer located around the emitter and the base electrode. The present invention utilizing a simple double poly silicon technology not only can improve the performance of the transistor, but also can reduce the area of the active region in order to increase the integration density.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: January 14, 2014
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Jing Chen, Jiexin Luo, Qingqing Wu, Jianhua Zhou, Xiaolu Huang, Xi Wang
  • Patent number: 8580659
    Abstract: The present invention discloses a method of fabricating high-mobility dual channel material based on SOI substrate, wherein compressive strained SiGe is epitaxially grown on a conventional SOI substrate to be used as channel material of PMOSFET; Si is then epitaixally grown on SiGe, and approaches such as ion implantation and annealing are employed to allow relaxation of part of strained SiGe and transfer strain to the Si layer thereon so as to form strained Si material as channel material of NMOSFET. With simple process and easy realization, this method can provide high-mobility channel material for NMOSFET and PMOSFET at the same time, well meeting the requirement of simultaneously enhancing the performance of NMOSFET and PMOSFET devices and therefore providing potential channel material for CMOS process of the next generation.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 12, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Miao Zhang, Bo Zhang, Zhongying Xue, Xi Wang
  • Patent number: 8501593
    Abstract: The present invention discloses a method of NiSiGe epitaxial growth by introducing Al interlayer, comprising the deposition of an Al thin film on the surface of SiGe layer, subsequent deposition of a Ni layer on Al thin film and then the annealing process for the reaction between Ni layer and SiGe material of SiGe layer to form NiSiGe material. Due to the barrier effect of Al interlayer, NiSiGe layer features a single crystal structure, a flat interface with SiGe substrate and a thickness of up to 0.3 nm, significantly enhancing interface performance.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: August 6, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Miao Zhang, Bo Zhang, Zhongying Xue, Xi Wang
  • Patent number: 8501577
    Abstract: A preparation method for a full-isolated silicon on insulator (SOI) substrate with hybrid crystal orientations and a preparation method of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) based on the method are disclosed. In the preparation method for the full-isolated SOI substrate with hybrid crystal orientations provided in the present invention, a SiGe layer is adopted to serve as an epitaxial virtual substrate layer with a first crystal orientation, so as to form a strained top silicon with the first crystal orientation; a polysilicon supporting material is adopted to serve as a support for connecting the top silicon with the first crystal orientation and a top silicon with a second crystal orientation, so that the SiGe layer below the strained top silicon with the first crystal orientation may be removed, and an insulating material is filled to form an insulating buried layer.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 6, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Jiantao Bian, Zengfeng Di, Miao Zhang
  • Patent number: 8476085
    Abstract: The present invention discloses a method of fabricating dual trench isolated epitaxial diode array. This method starts with the formation of heavily-doped first conductivity type regions and heavily-doped second conductivity type regions on the substrate, followed by epitaxial growth, then the formation of the isolations between diode array word lines by deep trench etch and the formation of the isolations between bit lines vertical to deep trenches by shallow trench etch, and finally the formation of separate diode array cells in the regions enclosed by deep and shallow trench isolations by ion implantation. This invention also provides a method of preventing the crosstalk current between adjacent word lines and bit lines of epitaxial diode arrays isolated by foregoing dual shallow trenches.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 2, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Chao Zhang, Zhitang Song, Xudong Wan, Bo Liu, Guanping Wu, Ting Zhang, Zuoya Yang, Zhifeng Xie