Abstract: Provided is a method for improving the yield of a harvested product of at least one plant selected from the group consisting of plants belonging to the families Solanaceae, Cucurbitaceae, Poaceae and Fabaceae. A method for cultivating at least one plant selected from the group consisting of plants belonging to the families Solanaceae, Cucurbitaceae, Poaceae and Fabaceae comprises applying a plant-vitalizing agent comprising an exogenous elicitor and an endogenous elicitor to a young seedling of the plant at least one time.
Abstract: A negative electrode material for lithium ion secondary batteries, including composite material particles containing nanosilicon particles having a 50% particle diameter (Dn50) of 5 to 100 nm in a number-based cumulative particle size distribution of primary particles, graphite particles and an amorphous carbon material; the composite material particles containing the nanosilicon particles at a content of 30 to 60 mass % or less, and the amorphous carbon material at a content of 30 to 60 mass % or less; the composite material particles having a 90% particle diameter (DV90) in the volume-based cumulative particle size distribution of 10.0 to 40.0 ?m, a BET specific surface area of 1.0 to 5.0 m2/g, and an exothermic peak temperature in DTA measurement of 830° C. to 950° C. Also disclosed is a paste for negative electrodes, a negative electrode sheet, a lithium ion secondary battery and a method for manufacturing the negative electrode material.
Type:
Grant
Filed:
September 18, 2018
Date of Patent:
October 3, 2023
Assignees:
Showa Denko K.K., Umicore
Inventors:
Yasunari Otsuka, Nobuaki Ishii, Nicolas Marx, Stijn Put
Abstract: A solid electrolyte material, a solid electrolyte, a method for producing these, and an all-solid-state battery. The solid electrolyte material includes a lithium ion conductive compound (a) including lithium, tantalum, phosphorus, and oxygen as constituent elements, and at least one compound (b) selected from a boron compound, a bismuth compound, and a phosphorus compound, wherein the compound (b) is a compound different from the compound (a).
Abstract: Provided is a molding packaging material which is capable of ensuring good slipperiness to secure good formability when molding the molding packaging material and is less likely to cause white powder on a surface of the packaging material. The molding packaging material includes a substrate layer 2 as an outer layer, a heat fusible resin layer 3 as an inner layer, and a metal foil layer 4 arranged between the two layers. The heat fusible resin layer 3 is composed of a single layer or a multi-layer. The innermost layer of the heat fusible resin layer 3 is made of a resin composition containing a heat fusible resin, an anti-blocking agent, a slip agent, and a fluoropolymer-based lubricant.
Abstract: An etching method including an etching step of bringing, in the presence of plasma, an etching gas containing a fluorine compound with three or fewer carbon atoms having at least one bond of a carbon-oxygen double bond and an ether bond in a molecule into contact with a target etching member having an etching target and a non-etching target, and selectively etching the etching target in comparison with the non-etching target. A concentration of the fluorine compound in the etching gas is 0.5 vol% or more to 40 vol% or less, and the etching target has silicon nitride.
Abstract: A solid electrolyte material, a solid electrolyte, a method for producing the solid electrolyte, and an all-solid-state battery. The solid electrolyte material includes lithium, tantalum, phosphorus, and oxygen as constituent elements, and a temperature of an exothermic peak in a differential thermal analysis (DTA) curve of the solid electrolyte material is in the range of 500 to 850° C.
Abstract: A method for manufacturing a laminate, the method comprising a process of forming a silver-particle layer on a substrate, the process comprising allowing an aqueous solution of ammoniacal silver nitrate to contact with an aqueous solution of a reducing agent, and the aqueous solution of a reducing agent comprising a phenol compound as the reducing agent.
Abstract: A solid electrolyte material, a solid electrolyte, a method for producing the solid electrolyte, and an all-solid-state battery. The solid electrolyte material includes lithium, tantalum, phosphorus, and oxygen as constituent elements and includes at least one element selected from boron, niobium, silicon, and bismuth as a constituent element, and is amorphous.
Abstract: A method of producing an Al—Mg—Si-based aluminum alloy forged product, includes a solution heat treatment step of performing a solution heat treatment for heating the forged product obtained in the forging step at a temperature rising rate of 5.0° C./min or more from 20° C. to 500° C. and holding the forged product at 530° C. to 560° C. for 0.3 hours to 3 hours, a quench treatment step of quenching the forged product in a water tank by bringing an entire surface of the forged product into contact with quenching water within 5 seconds to 60 seconds after the solution heat treatment step for more than 5 minutes and not more than 40 minutes, and an aging treatment step of performing an aging treatment by heating the forged product after the quench treatment step at a temperature of 180° C. to 220° C. for 0.5 hours to 1.5 hours.
Abstract: According to the present invention, there is provided a SiC epitaxial wafer including: a 4H-SiC single crystal substrate which has a surface with an off angle with respect to a c-plane as a main surface and a bevel part on a peripheral part; and a SiC epitaxial layer having a film thickness of 20 ?m or more, which is formed on the 4H-SiC single crystal substrate, in which a density of an interface dislocation extending from an outer peripheral edge of the SiC epitaxial layer is 10 lines/cm or less.
Abstract: Provided is a method for improving the cotton crop yield. This method for cultivating cotton comprises treating seedlings at least once with a plant activator containing an exogenous elicitor and an endogenous elicitor.
Abstract: Sensitivity of a magnetic sensor using the magnetic impedance effect is improved. A magnetic sensor includes: a non-magnetic substrate; a sensitive element provided on the substrate, including a soft magnetic material, having a longitudinal direction and a short direction, provided with uniaxial magnetic anisotropy in a direction intersecting the longitudinal direction, and sensing a magnetic field by a magnetic impedance effect; and a protrusion part including a soft magnetic material and protruding from an end portion in the longitudinal direction of the sensitive element.
Abstract: Provided is a packaging material for a power storage device capable of securing excellent formability without causing pinholes and/or cracks even when deep depth forming is performed and also capable of sufficiently preventing delamination even when deep depth forming is performed or even when it is used under severe environments, such as, e.g., high temperature and high humidity. [Solving means] The packaging material for a power storage device has a configuration including a heat resistant resin layer 2 serving as an outer layer, a heat fusible resin layer 3 serving as an inner layer, and a metal foil layer 4 disposed between both the two layers. The heat resistant resin layer 2 is composed of a heat resistant resin film with a hot water shrinkage percentage of 1.5% to 12%. The heat resistant resin layer 2 and the metal foil layer 4 are bonded via an outer adhesive layer 5 composed of a cured film of an electron beam curable resin composition.
Abstract: A fluorine-containing ether compound represented by the following formula (1) is provided. (In the formula (1), R1 is an alkoxy group having 1 to 10 carbon atoms, R2 is a perfluoropolyether chain, R3 is —OCH2CH(OH)CH2O(CH2)mOH (m in the formula is an integer of 2 to 4).
Abstract: A resin composition that contains: a resin that has a polar group; and an insulating filler that, on a volume-based particle size distribution curve, has a particle size of no more than 5.0 µm at an accumulation of 50% from the smaller side and a particle size of no more than 10.0 µm at an accumulation of 99% from the smaller side. The insulating filler is at least 50 volume% of the total solid content of the resin composition.
Abstract: The sensitivity of a magnetic sensor using a sensitive element sensing a magnetic field by the magnetic impedance effect is increased. The magnetic sensor includes: a sensitive element sensing a magnetic field by a magnetic impedance effect; and a focusing member provided to face the sensitive element, configured with a soft magnetic material, and focusing magnetic force lines from outside onto the sensitive element.
Abstract: A liquid dispersion composition for solid electrolytic capacitor production, containing a conjugated conductive polymer prepared by polymerizing a monomer compound in a dispersion medium containing seed particles with protective colloid formed of a polyanion or in a dispersion medium containing a polyanion, and a compound (a) represented by a general formula (1), where R1 to R6 and k are as defined in the description; and a method for producing a solid electrolytic capacitor, including a step of adhering the composition to a porous anode body made of a valve action metal having a dielectric coating film on the surface thereof, and a step of removing the dispersion medium from the liquid dispersion composition having adhered to the porous anode body to form a solid electrolyte layer
Abstract: A method for producing a highly polymerizable N-vinyl carboxylic acid amide monomer includes (A) melting a crude N-vinyl carboxylic acid amide monomer comprising 50 to 88 mass % of an N-vinyl carboxylic acid amide monomer by heating, followed by cooling for precipitation, and subjecting precipitated N-vinyl carboxylic acid amide monomer crystals to solid-liquid separation (step (A)), and (B) further dissolving the N-vinyl carboxylic acid amide monomer crystals separated in step (A) in a mixed solvent of acetonitrile and an aliphatic hydrocarbon having 6 to 7 carbon atoms, then performing crystallization, performing solid-liquid separation, and recovering an N-vinyl carboxylic acid amide monomer purified product (step (B)), wherein a mass ratio of acetonitrile/N-vinyl carboxylic acid amide monomer crystal in step (B) is 0.01 to 0.5, and a mass ratio of aliphatic hydrocarbon having 6 to 7 carbon atoms/N-vinyl carboxylic acid amide monomer crystal in step (B) is 0.5 to 3.0.
Abstract: A magnetic sensor 10 includes: a non-magnetic substrate 11; a sensitive circuit 12 provided on a surface of the substrate 11 and including a sensitive part 121 sensing a magnetic field by a magnetic impedance effect; a terminal part 13a and a terminal part 13b connected to respective both end portions of the sensitive circuit 12; and a conductive returning member with one end portion being connected to the terminal part 13a, the returning member returning back toward the terminal part 13b.