Abstract: An aluminum alloy forging includes 0.30 mass % or more and 1.0 mass % or less of Cu; 0.63 mass % or more and 1.30 mass % or less of Mg; 0.45 mass % or more and 1.45 mass % or less of Si; the balance being Al and inevitable impurities, wherein the following relations are satisfied, [Mg content]×1.587??4.1×[Cu content]2+7.8×[Cu content]?1.9??(1) [Si content]×2.730??4.1×[Cu content]2+7.8×[Cu content]?1.9??(2) and the ratio of the integrated intensity Q1 of the X-ray diffraction peak of the CuAl2 phase to the integrated intensity Q2 of the X-ray diffraction peak of the (200) plane of the Al phase obtained by the X-ray diffraction method, Q1/Q2, is 2×10?1 or less.
Abstract: A method for producing a thiol compound including a light emission process in which light is emitted to a colored thiol compound or a composition containing the thiol compound. In the light emission process, it is preferable to emit light including light with a wavelength of 250 nm to 600 nm to the composition.
Abstract: Provided is a transparent conducting film having a preferable optical property, a preferable electrical property, and further, a superior durability of folding. The transparent conducting film comprises a transparent substrate and a transparent conducting layer formed on at least one of main faces of the transparent substrate, wherein the transparent conducting layer contains a binder resin and a conducting fiber, a cut portion of the transparent conducting film has a straightness of 0.050 mm or less. Preferably, the transparent substrate is a resin film having an elongated resin film or cut out from an elongated film, and can be folded in with a folding axis in the direction perpendicular to the longitudinal direction of the elongated resin film.
Abstract: It is aimed at improving sensitivity of a magnetic sensor using the magnetic impedance effect. A magnetic sensor includes: a non-magnetic substrate; and a sensitive element including a soft magnetic material layer composed of an amorphous alloy with an initial magnetic permeability of 5,000 or more, the soft magnetic material layer being provided on the substrate, having a longitudinal direction and a short direction, being provided with uniaxial magnetic anisotropy in a direction crossing the longitudinal direction, and sensing a magnetic field by a magnetic impedance effect.
Abstract: What is provided is a production method in which a vinyl acetate is reacted with a primary or secondary alcohol represented by Formula (1) and carbon monoxide to produce a first ester compound represented by Formula (2), and the first ester compound is reacted with an alcohol to produce a lactic acid ester represented by Formula (3) and an acetic acid ester represented by Formula (4).
Type:
Application
Filed:
May 20, 2021
Publication date:
June 22, 2023
Applicants:
KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION, SHOWA DENKO K.K.
Abstract: A primer for forming a primer layer on the surface of a substrate having surface free energy of 50 mN/m or higher, the primer including a liquid crystalline epoxy compound and a curing agent.
Type:
Application
Filed:
May 13, 2021
Publication date:
June 15, 2023
Applicant:
Showa Denko Materials Co., Ltd.
Inventors:
Ning TANG, Shingo TANAKA, Yoshitaka TAKEZAWA
Abstract: A dummy substrate is formed with a disk-shaped glass substrate having a center hole, and a magnetic recording film on an outer circumferential surface along a thickness direction of the glass substrate and an inner circumferential surface of the center hole, and a surface roughness (Ra) of one surface and the other surface of the glass substrate is in a range of 0.2 nm or more and 100 nm or less.
Abstract: A heat exchanger includes a bag-like outer packaging material. A heat medium flows into an inside of the outer packaging material via the heat medium inlet, passes through the inside, and flows out of the outer packaging material via the heat medium outlet. An inner core material is arranged in the inside of the outer packaging material. The outer packaging material has an outer packaging laminate material including a metal heat transfer layer and a resin thermal fusion layer on a surface side of the heat transfer layer. The outer packaging laminate materials form a bag shape by integrally joining the thermal fusion layers along the peripheral edge portions. The inner core material includes the inner core laminate material with a metal heat transfer layer and resin thermal fusion layers on surface sides of the heat transfer layer.
Abstract: A lithium ion conductive solid electrolyte or an all-solid-state battery. The lithium ion conductive solid electrolyte satisfies any of (I) to (III): (I) having a crystal structure based on LiTa2PO8 and a crystal structure based on at least one compound selected from LiTa3O8, Ta2O5, and TaPO5; (II) being represented by the stoichiometric formula of Lia1Tab1Bc1Pd1Oe1 where 0.5<a1<2.0, 1.0<b1?2.0, 0<c1<0.5, 0.5<d1<1.0, and 5.0<e1?8.0; (III) being represented by the stoichiometric formula of Lia2Tab2Mac2Bd2Pe2Of2 where 0.5<a2<2.0, 1.0<b2?2.0, 0<c2<0.5, 0<d2<0.5, 0.5<e2<1.0, and 5.0<f2?8.0, and Ma is one or more elements selected from the group consisting of Nb, Zr, Ga, Sn, Hf, Bi, W, Mo, Si, Al, and Ge.
Abstract: A conductive film includes an elongated release film and a plurality of conductive adhesive film pieces provided on the release film. Then, the plurality of adhesive film pieces are arranged in a longitudinal direction X of the release film. For this reason, the adhesive film piece can be set to an arbitrary shape. Accordingly, it is possible to attach the adhesive film piece to adhesive surfaces having various shapes and to efficiently use the adhesive film piece.
Abstract: Provided are a transparent conducting film laminate to which a curl generated during a heating step and after the heating step can be controlled, and a method for processing the same. A transparent conducting film laminate comprises a transparent conducting film 20 and a carrier film 10 stacked thereon, wherein the transparent conducting film 20 comprises a transparent resin film 3, transparent conducting layer 4, and an overcoat layer 5 stacked in this order, the transparent resin film 3 having a thickness T1 of 5 to 25 ?m and being made of an amorphous cycloolefin-based resin, the carrier film 10 is releasably stacked on the other main face, the face opposite to the face having the transparent conducting layer 4, of the transparent resin film 3 with an adhesive agent layer 2 therebetween, and a protection film 1 has a thickness T2 which is 5 times or more of the thickness T1 of the transparent resin film 3 and is 150 ?m or less, and is made of polyester having an aromatic ring in its molecular backbone.
Abstract: A precursor of an alumina sintered compact including aluminum, yttrium, and at least one metal selected from iron, zinc, cobalt, manganese, copper, niobium, antimony, tungsten, silver, and gallium. The aluminum content is 98.0% by mass or more as an oxide (Al2O3) in 100% by mass of the precursor of an alumina sintered compact; the yttrium content is 0.01 to 1.35 parts by mass as an oxide (Y2O3) based on 100 parts by mass of the content of the aluminum as an oxide; the total content of the metals selected from the foregoing group is 0.02 to 1.55 parts by mass as an oxide based on 100 parts by mass of the content of aluminum as an oxide; and the aluminum is contained as ?-alumina. Also disclosed is an alumina sintered compact, and a method for producing an alumina sintered compact and for producing abrasive grains.
Abstract: A fluorine-containing ether compound of the present invention is represented by the following General Formula (1). (In the General Formula (1), X is a trivalent atom or a trivalent atom group, A is a linking group including at least one polar group, B is a linking group having a perfluoropolyether chain, and D is a polar group or a substituent having a polar group at the end.) [Chem.
Abstract: A composition is provided including a compound (A) represented by Formula (1) and a compound (B) represented by Formula (2), wherein the compound (B) is contained in an amount of 0.00002 to 0.2 parts by mass with respect to 100 parts by mass of the compound (A): (R1—COO)n—R2—(NCO)m . . . (1) (in Formula (1), R1 is an ethylenically unsaturated group having 2 to 7 carbon atoms; R2 is an (m+n)-valent hydrocarbon group having 1 to 7 carbon atoms; and n and m are each an integer of 1 or 2) (in Formula (2), R is (—R2—(OCO—R1), and R1 and R2 are the same as those in Formula (1)).
Abstract: The fluorine-containing ether compound is represented by the following formula (1): R1—R2—CH2—R3—CH2—R4. In the formula (1), R1 is represented by the following formula (2), R2 is represented by the following formula (3), R3 is a perfluoropolyether chain, and R4 is an organic end group different from R1—R2— and contains two or three polar groups, wherein each polar group is bonded to a different carbon atom, and the carbon atoms to which the polar groups are bonded are bonded to one another via a linking group containing a carbon atom to which the polar group is not bonded. In the formula (2), r is 1 to 3. In the formula (3), w is 2 or 3.
Abstract: The present invention provides a method for efficiently obtaining a fertilizer containing polysaccharide hydrolysates and nutrients such as calcium, phosphoric acid, and nitrogen. The present invention is a method for manufacturing a fertilizer, characterized by comprising: a hydrolysis step for obtaining a mixture including polysaccharide hydrolysates through hydrolysis of polysaccharides using an acid catalyst; and a neutralizing step after the hydrolysis step for adding at least one basic compound selected from the group consisting of potassium salt, phosphate, ammonium salt, and ammonia.
Abstract: In an n-type 4H-SiC single crystal substrate of the present disclosure, the concentration of the element N as a donor and the concentration of the element B as an acceptor are both 3×1018/cm3 or more, and a threading dislocation density is less than 4,000/cm2.
Abstract: A gas-barrier resin (A) having an oxygen permeability coefficient of 1.0×10?14 (cm3·cm/cm2·s·Pa) or less; and a copolymer (B) containing monomer structural units represented by the formula (1), the formula (2), and the formula (3): where: R1 represents a hydrogen atom or a methyl group; R2 represents a hydrocarbon group having 1 to 20 carbon atoms that may be substituted with a halogen atom, a hydroxy group, an alkoxy group, or an amino group; 1, m, and n represent numerical values representing molar proportions of the respective monomer structural units, and n may represent 0; and p represents an integer of from 1 to 4, wherein a ratio of a mass of the copolymer (B) to a total mass of the gas-barrier resin (A) and the copolymer (B) is from 1 mass % to 40 mass %.
Type:
Grant
Filed:
July 17, 2018
Date of Patent:
May 23, 2023
Assignees:
SHOWA DENKO K.K., JAPAN POLYETHYLENE CORPORATION
Abstract: A dry etching method which includes a dry etching step in which an etching gas containing a halogen fluoride being a compound of bromine or iodine and fluorine is brought into contact with a member to be etched (12) including an etching target being a target of etching with the etching gas to etch the etching target without using plasma. The etching target contains copper. Additionally, the dry etching step is performed under temperature conditions of from 140° C. to 300° C. Also disclosed is a method for manufacturing a semiconductor element and a cleaning method using the dry etching method.
Abstract: A method of manufacturing a forged product includes a heating step, a first and a second forging steps, wherein the forging temperature in the heating step is 450° C. or higher and 550° C. or lower, and surface temperatures of the upper molding part of the first upper die in the first forging step and the upper molding part of the second upper die in the second forging step are 150° C. or higher and 190° C. or lower, surface temperatures of the lower molding parts of the first and the second lower dies are 190° C. or higher and 230° C. or lower, and the surface temperatures of the lower molding parts of the first and the second lower dies are higher by 5° C. or more than the surface temperatures of the upper molding parts of the first and the second upper dies.