Abstract: A method for transferring a piezoelectric layer onto a support substrate comprises: —providing a donor substrate including a heterostructure comprising a piezoelectric substrate bonded to a handling substrate, and a polymerized adhesive layer at the interface between the piezoelectric substrate and the handling substrate, —forming a weakened zone in the piezoelectric substrate, so as to delimit the piezoelectric layer to be transferred, —providing the support substrate, —forming a dielectric layer on a main face of the support substrate and/or of the piezoelectric substrate, —bonding the donor substrate to the support substrate, the dielectric layer being at the bonding interface, and—fracturing and separating the donor substrate along the weakened zone at a temperature below or equal to 300° C.
Abstract: A method for manufacturing a composite structure comprising a thin layer made of monocrystalline silicon carbide arranged on a carrier substrate made of silicon carbide, the method comprising: a) a step of providing a donor substrate made of monocrystalline silicon carbide, b) a step of ion implantation of light species into the donor substrate, to form a buried brittle plane delimiting the thin layer between the buried brittle plane and a free surface of the donor substrate, c) a succession of n steps of forming crystalline carrier layers, with n greater than or equal to 2; the n crystalline carrier layers being positioned on the front face of the donor substrate successively one on the other, and forming the carrier substrate; each formation step comprising: direct liquid injection chemical vapor deposition, at a temperature below 900° C.
Abstract: The invention relates to a front-side imager comprising in succession: —a semiconductor carrier substrate, a first electrically insulating separating layer, and a single-crystal semiconductor layer, called the active layer, comprising a matrix array of photodiodes, wherein the imager further comprises between the carrier substrate and the first electrically insulating layer: —a second electrically insulating separating layer, and —a second semiconductor or electrically conductive layer, called the intermediate layer, arranged between the second separating layer and the first separating layer, the second separating layer being thicker than the first separating layer.
Type:
Grant
Filed:
June 21, 2019
Date of Patent:
November 19, 2024
Assignee:
Soitec
Inventors:
Walter Schwarzenbach, Manuel Sellier, Ludovic Ecarnot
Abstract: A method for transferring a useful layer from a donor substrate to a carrier substrate comprises: a) providing the donor substrate, the donor substrate including a buried weakened plane; b) providing the carrier substrate; c) joining the donor substrate to the carrier substrate to form a bonded structure; and d) annealing the bonded structure in order to increase the level of weakening of the buried weakened plane. A predetermined stress is applied to the buried weakened plane during the annealing for a period of time, the predetermined stress being selected so as to initiate the splitting wave once a given level of weakening has been reached. At the end of the period of time, the given level of weakening having been reached, the predetermined stress causes initiation and self-sustained propagation of the splitting wave along the buried weakened plane, resulting in the useful layer being transferred to the carrier substrate.
Type:
Grant
Filed:
February 26, 2020
Date of Patent:
November 12, 2024
Assignee:
Soitec
Inventors:
Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed
Abstract: A substrate for a surface acoustic wave device or bulk acoustic wave device, comprising a support substrate and an piezoelectric layer on the support substrate, wherein the support substrate comprises a semiconductor layer on a stiffening substrate having a coefficient of thermal expansion that is closer to the coefficient of thermal expansion of the material of the piezoelectric layer than that of silicon, the semiconductor layer being arranged between the piezoelectric layer and the stiffening substrate.
Abstract: A semiconductor structure for radio frequency applications includes a support substrate made of silicon and comprising a mesoporous layer, a dielectric layer arranged on the mesoporous layer and a superficial layer arranged on the dielectric layer. The mesoporous layer comprises hollow pores, the internal walls of which are mainly lined with oxide. The mesoporous layer has a thickness between 3 and 40 microns and a resistivity greater than 20 kohm·cm over its entire thickness. The support substrate has a resistivity between 0.5 and 4 ohm·cm. The invention also relates to a method for producing such a semiconductor structure.
Type:
Grant
Filed:
March 25, 2020
Date of Patent:
October 15, 2024
Assignees:
Soitec, COMMISSARIAT À L'ENERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
Abstract: A method of interrogating an acoustic wave sensor comprises transmitting, by an interrogator, an interrogation radiofrequency signal to the acoustic wave sensor by way of a transmission antenna, receiving, by the interrogator, a response radiofrequency signal from the acoustic wave sensor by way of a reception antenna, and processing by a processing means of the interrogator the received response radiofrequency signal to obtain in-phase and quadrature components both in the time domain and the frequency domain, determining by the processing means perturbations of the obtained in-phase and quadrature components both in the time domain and the frequency domain and determining by the processing means a value of a measurand based on the detected perturbations.
Abstract: The invention relates to a method for fabricating a pseudo-substrate comprising the steps of providing a single crystal ingot, providing a handle substrate, cutting a thin slice from the single crystal ingot, and attaching the thin slice to the handle substrate to form a pseudo-substrate. According to the invention, the thickness of the thin slice is substantially equal or inferior to a critical thickness below which the slice, if taken alone, is no longer mechanically stable. The invention further relates to a semiconductor structure.
Abstract: The disclosure relates to a hybrid structure for a surface-acoustic-wave device comprising a useful layer of piezoelectric material joined to a carrier substrate having a thermal expansion coefficient lower than that of the useful layer; the hybrid structure comprising an intermediate layer located between the useful layer and the carrier substrate, the intermediate layer being a structured layer formed from at least two different materials comprising a plurality of periodic motifs in the plane of the intermediate layer.
Type:
Grant
Filed:
January 31, 2022
Date of Patent:
October 1, 2024
Assignee:
SOITEC
Inventors:
Oleg Kononchuk, Eric Butaud, Eric Desbonnets
Abstract: A method of manufacturing a substrate for a front-facing image sensor, comprises:—providing a donor substrate comprising a semiconductor layer to be transferred,—providing a semiconductor carrier substrate,—bonding the donor substrate to the carrier substrate, an electrically insulating layer being at the bonding interface,—transferring the semiconductor layer to the carrier substrate,—implanting gaseous ions in the carrier substrate via the transferred semiconductor layer and the electrically insulating layer, and—after the implantation, epitaxially growing an additional semiconductor layer on the transferred semiconductor layer.
Type:
Grant
Filed:
December 23, 2019
Date of Patent:
September 24, 2024
Assignee:
Soitec
Inventors:
Walter Schwarzenbach, Ludovic Ecarnot, Damien Massy, Nadia Ben Mohamed, Nicolas Daval, Christophe Girard, Christophe Maleville
Abstract: The present invention relates to a heterostructure, in particular, a piezoelectric structure, comprising a cover layer, in particular, a layer of piezoelectric material, the material of the cover layer having a first coefficient of thermal expansion, assembled to a support substrate, the support substrate having a second coefficient of thermal expansion substantially different from the first coefficient of thermal expansion, at an interface wherein the cover layer comprises at least a recess extending from the interface into the cover layer, and its method of fabrication.
Type:
Grant
Filed:
April 18, 2023
Date of Patent:
September 24, 2024
Assignee:
SOITEC
Inventors:
Arnaud Castex, Daniel Delprat, Bernard Aspar, Ionut Radu
Abstract: A coupled cavity filter structure that uses a surface acoustic wave, in particular, a guided surface acoustic wave, comprises an acoustic wave propagating substrate, at least one input transducer structure and one output transducer structure, provided over the substrate, each comprising inter-digitated comb electrodes, at least one reflecting structure comprising at least one or more metallic strips positioned at a distance and in between the input and output transducer structures, in the direction of propagation of an acoustic wave. The acoustic wave propagating substrate is a composite substrate comprising a base substrate and a piezoelectric layer. In additional embodiments, a coupled cavity filter structure comprises a groove. In additional embodiments, a SAW ladder filter device comprises at least two coupled cavity filter structures as described herein, wherein the at least two coupled cavity filter structures are positioned on a single line.
Abstract: A process for transferring blocks from a donor to a receiver substrate, comprises: arranging a mask facing a free surface of the donor substrate, the mask having one or more openings that expose the free surface of the donor substrate, the openings distributed according to a given pattern; forming, by ion implantation through the mask, an embrittlement plane in the donor substrate vertically in line with at least one region exposed through the mask, the embrittlement plane delimiting a respective surface region; forming a block that is raised relative to the free surface of the donor substrate localized vertically in line with each respective embrittlement plane, the block comprising the respective surface region; bonding the donor substrate to the receiver substrate via each block located at the bonding interface, after removing the mask; and detaching the donor substrate along the localized embrittlement planes to transfer blocks onto the receiver substrate.
Abstract: A method for producing a composite structure comprises providing a donor substrate including a single-crystal material, and a support substrate having a first alignment pattern on a face or edge of the support substrate. A heat treatment is applied at least to the donor substrate to bring about a surface reorganization on at least one face of the donor substrate. The surface reorganization results in formation of first steps of nanometric amplitude, which are parallel to a first main axis. The donor substrate and the support substrate are optically aligned, to better than ±0.1° between a locating mark indicating the first main axis on the donor substrate and at least one alignment pattern of the support substrate. The donor substrate and the support substrate are then assembled together, and a thin layer is transferred from the donor substrate onto the support substrate.
Abstract: A resonator device for measuring stress comprises at least two resonators, each resonator comprising an inter-digitated transducer structure arranged between two reflecting structures on or in a piezoelectric substrate, characterized in that the at least two resonators are arranged and positioned such that they have two different wave propagation directions, and each resonator comprises at least two parts with the area between the two parts of the at least two resonators forming a cavity, wherein the cavity is shared by the at least two resonators. A differential sensing device may comprise at least one resonator device as described wherein.
Abstract: A method for manufacturing a film on a support having a non-flat surface comprises: providing a donor substrate having a non-flat surface, forming an embrittlement zone in the donor substrate so as to delimit the film to be transferred, forming the support by deposition on the non-flat surface of the film to be transferred, and detaching the donor substrate along the embrittlement zone so as to transfer the film onto the support.
Abstract: A process for producing a monocrystalline layer of AlN material comprises the transfer of a monocrystalline seed layer of SiC-6H material to a carrier substrate of silicon material, followed by the epitaxial growth of the monocrystalline layer of AlN material.
Abstract: A method of forming a substrate comprises providing a receiver substrate and a donor substrate successively comprising: a carrier substrate, a sacrificial layer, which can be selectively etched in relation to an active layer, and a silicon oxide layer, which is arranged on the active layer. A cavity is formed in the oxide layer to form a first portion that has a first thickness and a second portion that has a second thickness greater than the first thickness. The cavity is filled with a polycrystalline silicon filling layer to form a second free surface that is continuous and substantially planar. The receiver substrate and the donor substrate are assembled at the second free surface, and the carrier substrate is eliminated while preserving the active layer and the sacrificial layer.
Abstract: A method for manufacturing a film, notably monocrystalline, on a flexible sheet, comprises the following steps: providing a donor substrate, forming an embrittlement zone in the donor substrate so as to delimit the film, forming the flexible sheet by deposition over the surface of the film, and detaching the donor substrate along the embrittlement zone so as to transfer the film onto the flexible sheet.
Abstract: A method for etching a main surface of a thin layer of a substrate, which comprises immersing the substrate in an etching bath so as to expose the main surface to an etching agent, the substrate being oriented relative to the bath such that:—when it is introduced into the bath, the main surface is gradually immersed from an initial introduction point (PII) to an end introduction point (PFI), at an introduction speed, and—when it exits the bath, the main surface gradually emerges from an initial exit point (PIS) to an end exit point (PFS), at an exit speed, the method being characterized in that:—the introduction speed is chosen in such a way as to etch the main surface according to a first non-uniform profile between the initial introduction point (PII) and the end introduction point (PFI), and/or—the exit speed is chosen in such a way as to etch the main surface according to a second non-uniform profile between the initial exit point (PIS) and the end exit point (PFS), in order to compensate for non-uniformi