Patents Assigned to Soitec
  • Patent number: 11114314
    Abstract: A method of forming a semiconductor structure includes introducing, at selected conditions, hydrogen and helium species (e.g., ions) in a temporary support to form a plane of weakness at a predetermined depth therein, and to define a superficial layer and a residual part of the temporary support; forming on the temporary support an interconnection layer; placing at least one semiconductor chip on the interconnection layer; assembling a stiffener on a back side of the at least one semiconductor chip; and providing thermal energy to the temporary support to detach the residual part and provide the semiconductor structure. The interconnection layer forms an interposer free from any through via.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: September 7, 2021
    Assignee: Soitec
    Inventors: Bich-Yen Nguyen, Ludovic Ecarnot, Nadia Ben Mohamed, Christophe Malville
  • Patent number: 11101428
    Abstract: A method of manufacturing a monocrystalline layer, comprises the following successive steps: providing a donor substrate comprising a piezoelectric material of composition ABO3, where A consists of at least one element from among Li, Na, K, H, Ca; and B consists of at least one element from among Nb, Ta, Sb, V; providing a receiver substrate, transferring a layer called the “seed layer” from the donor substrate on to the receiver substrate, such that the seed layer is at the bonding interface, followed by thinning of the donor substrate layer; and growing a monocrystalline layer of composition A?B?O3 on piezoelectric material ABO3 of the seed layer where A? consists of a least one of the following elements Li, Na, K, H; B? consists of a least one of the following elements Nb, Ta, Sb, V; and A? is different from A or B? is different from B.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 24, 2021
    Assignee: SOITEC
    Inventors: Bruno Ghyselen, Jean-Marc Bethoux
  • Patent number: 11094812
    Abstract: A high electron mobility transistor for analog applications comprising: a substrate; an epitaxial III-N semiconductor layer stack on top of said substrate, said epitaxial III-N semiconductor layer stack comprising: a first active III-N layer; and a second active III-N layer comprising a recess; with a two dimensional Electron Gas in between III-N; a gate on top of said epitaxial III-N semiconductor layer stack; and a passivation stack between said epitaxial III-N semiconductor layer stack and said gate, wherein said passivation stack comprises an electron accepting dielectric layer adapted to deplete said two dimensional Electron Gas when said gate is not biased; wherein said electron accepting dielectric layer extends in said recess and comprises magnesium nitride doped with silicon and/or aluminum.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: August 17, 2021
    Assignee: Soitec Belgium
    Inventor: Joff Derluyn
  • Patent number: 11088016
    Abstract: The disclosure relates to a process for locating devices, the process comprising the following steps: a) providing a carrier substrate comprising: a device layer; and alignment marks; b) providing a donor substrate; c) forming a weak zone in the donor substrate, the weak zone delimiting a useful layer; d) assembling the donor substrate and the carrier substrate; and e) fracturing the donor substrate in the weak zone so as to transfer the useful layer to the device layer; wherein the alignment marks are placed in cavities formed in the device layer, the cavities having an aperture flush with the free surface of the device layer.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: August 10, 2021
    Assignee: Soitec
    Inventors: Marcel Broekaart, Ionut Radu, Chrystelle Lagahe Blanchard
  • Patent number: 11081521
    Abstract: A method for manufacturing a plurality of crystalline semiconductor islands having different lattice parameters includes providing a relaxation substrate comprising a support and a flow layer on the support that includes first and second groups of blocks having different viscosities at a relaxation temperature. The relaxation substrate also comprises a plurality of strained crystalline semiconductor islands on the flow layer, the islands of a first group being located on the first group of blocks and islands of a second group being located on the second group of blocks. The relaxation substrate is then heat treated at a relaxation temperature higher than or equal to the glass transition temperature of at least one block of the flow layer to cause differentiated lateral expansion of the first and second groups of islands such that the first and second groups of relaxed islands then have different lattice parameters.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: August 3, 2021
    Assignee: Soitec
    Inventor: Jean-Marc Bethoux
  • Publication number: 20210193853
    Abstract: An engineered substrate comprising: a seed layer made of a first semiconductor material for growth of a solar cell; a first bonding layer on the seed layer; a support substrate made of a second semiconductor material; a second bonding layer on a first side of the support substrate; a bonding interface between the first and second bonding layers; the first and second bonding layers each made of metallic material; wherein doping concentration and thickness of the engineered substrate, in particular, of the seed layer, the support substrate, and both the first and second bonding layers, are selected such that the absorption of the seed layer is less than 20%, preferably less than 10%, as well as total area-normalized series resistance of the engineered substrate is less than 10 mOhm·cm2, preferably less than 5 mOhm·cm2.
    Type: Application
    Filed: January 27, 2017
    Publication date: June 24, 2021
    Applicants: Soitec, Commissariat A L'Energie Atomique et aux Energies Alternatives, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Eric Guiot, Aurelie Tauzin, Thomas Signamarcheix, Emmanuelle Lagoutte
  • Patent number: 11043756
    Abstract: A structure for radiofrequency applications includes a high-resistivity support substrate having a front face defining a main plane, a charge-trapping layer disposed on the front face of the support substrate, a first dielectric layer disposed on the charge-trapping layer, an active layer disposed on the first dielectric layer, at least one buried electrode disposed above or in the charge-trapping layer. The buried electrode comprises a conductive layer and a second dielectric layer.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: June 22, 2021
    Assignee: Soitec
    Inventors: Eric Desbonnets, Bernard Aspar
  • Patent number: 10957577
    Abstract: A method for fabricating a strained semiconductor-on-insulator substrate comprises bonding a donor substrate to a receiving substrate with a dielectric layer at the interface. The donor substrate comprises a monocrystalline carrier substrate, an intermediate etch-stop layer, and a monocrystalline semiconductor layer. The monocrystalline semiconductor layer is transferred from the donor substrate to the receiving substrate. Trench isolations are formed to cut a portion from a layer stack including the transferred monocrystalline semiconductor layer, the dielectric layer, and the strained semiconductor material layer. The cutting operation results in relaxation of strain in the strained semiconductor material, and in application of strain to the transferred monocrystalline semiconductor layer.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: March 23, 2021
    Assignee: SOITEC
    Inventors: Walter Schwarzenbach, Guillaume Chabanne, Nicolas Daval
  • Patent number: 10950491
    Abstract: A useful layer is layered onto a support by a method that includes the steps of forming an embrittlement plane by implanting light elements into a first substrate, so as to form a useful layer between such plane and one surface of the first substrate; applying the support onto the surface of the first substrate so as to form an assembly to be fractured; applying a heat treatment for embrittling the assembly to be fractured; and initiating and propagating a fracture wave into the first substrate along the embrittlement plane. The fracture wave is initiated in a central area of the embrittlement plane and the propagation speed of the wave is controlled so that the velocity thereof is sufficient to cause the interactions of the fracture wave with acoustic vibrations emitted upon the initiation and/or propagation thereof, if any, are confined to a peripheral area of the useful layer.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: March 16, 2021
    Assignees: Soitec, COMMISSARIAT Á L'ÈNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Didier Landru, Nadia Ben Mohamed, Oleg Kononchuk, Frederic Mazen, Damien Massy, Shay Reboh, Francois Rieutord
  • Patent number: 10943778
    Abstract: A method for manufacturing a substrate includes the following steps: (a) providing a support substrate with a first coefficient of thermal expansion, having on one of its faces a first plurality of trenches parallel to each other in a first direction, and a second plurality of trenches parallel to each other in a second direction; (b) transferring a useful layer from a donor substrate to the support substrate, the useful layer having a second coefficient of thermal expansion; wherein an intermediate layer is inserted between the front face of the support substrate and the useful layer, the intermediate layer having a coefficient of thermal expansion between the first and second coefficients of thermal expansion.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: March 9, 2021
    Assignee: Soitec
    Inventors: Pascal Guenard, Marcel Broekaart, Thierry Barge
  • Patent number: 10943815
    Abstract: A substrate for microelectronic radiofrequency devices includes a carrier substrate made of a first semiconductor material having a resistivity higher than 500 ohms-cm; a plurality of trenches in the carrier substrate, which trenches are filled with a second material, and defining on a first side of the carrier substrate a plurality of first zones made of a first material and at least one second zone made of a second material. The second material has a resistivity higher than 10 kohms-cm, and the first zones have a maximum dimension smaller than 10 microns and are insulated from one another by the second zone.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: March 9, 2021
    Assignee: Soitec
    Inventors: Eric Desbonnets, Ionut Radu, Oleg Kononchuk, Jean-Pierre Raskin
  • Patent number: 10924081
    Abstract: A substrate for a surface acoustic wave device or bulk acoustic wave device, comprising a support substrate and an piezoelectric layer on the support substrate, wherein the support substrate comprises a semiconductor layer on a stiffening substrate having a coefficient of thermal expansion that is closer to the coefficient of thermal expansion of the material of the piezoelectric layer than that of silicon, the semiconductor layer being arranged between the piezoelectric layer and the stiffening substrate.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: February 16, 2021
    Assignee: Soitec
    Inventors: Marcel Broekaart, Thierry Barge, Pascal Guenard, Ionut Radu, Eric Desbonnets, Oleg Kononchuk
  • Patent number: 10910256
    Abstract: The invention relates to a method for fabricating a pseudo-substrate comprising the steps of providing a single crystal ingot, providing a handle substrate, cutting a thin slice from the single crystal ingot, and attaching the thin slice to the handle substrate to form a pseudo-substrate. According to the invention, the thickness of the thin slice is substantially equal or inferior to a critical thickness below which the slice, if taken alone, is no longer mechanically stable. The invention further relates to a semiconductor structure.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: February 2, 2021
    Assignee: Soitec
    Inventors: Fabrice Letertre, Oleg Kononchuk
  • Patent number: 10910250
    Abstract: The present disclosure relates to a method for mechanically separating layers, in particular in a double layer transfer process. The present disclosure relates more in particular to a method for mechanically separating layers, comprising the steps of providing a semiconductor compound comprising a layer of a handle substrate and an active layer with a front main side and a back main side opposite the front main side, wherein the layer of the handle substrate is attached to the front main side of the active layer, then providing a layer of a carrier substrate onto the back main side of the active layer, and then initiating mechanical separation of the layer of the handle substrate, wherein the layer of the handle substrate and the layer of the carrier substrate are provided with a substantially symmetrical mechanical structure.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: February 2, 2021
    Assignee: Soitec
    Inventors: Marcel Broekaart, Ionut Radu, Didier Landru
  • Publication number: 20210028348
    Abstract: A method for separating a removable composite structure using a light flux includes supplying the removable composite structure, which successively comprises: a substrate that is transparent to the light flux; an optically absorbent layer for at least partially absorbing a light flux; a sacrificial layer adapted to dissociate subject to the application of a temperature higher than a dissociation temperature and made of a material different from that of the optically absorbent layer; and at least one layer to be separated. The method further includes applying a light flux through the substrate, the light flux being at least partly absorbed by the optically absorbent layer, so as to heat the optically absorbent layer; heating the sacrificial layer by thermal conduction from the optically absorbent layer, up to a temperature that is greater than or equal to the dissociation temperature; and dissociating the sacrificial layer under the effect of the heating.
    Type: Application
    Filed: March 22, 2019
    Publication date: January 28, 2021
    Applicants: Soitec, Soitec
    Inventors: Jean-Marc Bethoux, Guillaume Besnard, Yann Sinquin
  • Patent number: 10903263
    Abstract: A front-side type image sensor includes a substrate successively comprising a P? type doped semiconducting support substrate, an electrically insulating layer and a semiconducting active layer, and a matrix array of photodiodes in the active layer of the substrate, wherein the substrate comprises, between the support substrate and the electrically insulating layer, a P+ type doped semiconducting epitaxial layer A method of forming such a structure includes epitaxially growing a P+ type doped semiconducting layer on a P? type doped semiconducting support substrate, providing an electrically insulating layer and an active layer over the P+ type doped semiconducting layer, and forming photodiodes in the active layer.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: January 26, 2021
    Assignee: Soitec
    Inventor: Walter Schwarzenbach
  • Publication number: 20210020826
    Abstract: A method for transferring a piezoelectric layer onto a support substrate comprises:—providing a donor substrate including a heterostructure comprising a piezoelectric substrate bonded to a handling substrate, and a polymerized adhesive layer at the interface between the piezoelectric substrate and the handling substrate,—forming a weakened zone in the piezoelectric substrate, so as to delimit the piezoelectric layer to be transferred,—providing the support substrate,—forming a dielectric layer on a main face of the support substrate and/or of the piezoelectric substrate,—bonding the donor substrate to the support substrate, the dielectric layer being at the bonding interface, and—fracturing and separating the donor substrate along the weakened zone at a temperature below or equal to 300° C.
    Type: Application
    Filed: March 21, 2019
    Publication date: January 21, 2021
    Applicant: Soitec
    Inventors: Djamel Belhachemi, Thierry Barge
  • Patent number: 10886162
    Abstract: A semiconductor-on-insulator substrate for use in RF applications, such as a silicon-on-insulator substrate, comprises a semiconductor top layer, a buried oxide layer and a passivation layer over a support substrate. In addition, a penetration layer is provided between the passivation layer and the silicon support substrate to ensure sufficient high resistivity below RF features and avoid increased migration of dislocations in the support substrate. RF devices may be fabricated on and/or in such a semiconductor-on-insulator substrate.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: January 5, 2021
    Assignee: Soitec
    Inventors: Arnaud Castex, Oleg Kononchuk
  • Publication number: 20200389148
    Abstract: The invention relates to a SAW resonator (100) comprising at least: a substrate (102); a layer (108) of piezoelectric material arranged on the substrate; a first attenuation layer (112) arranged between the substrate and the layer of piezoelectric material, and/or, when the substrate comprises at least two different layers (104, 106), a second attenuation layer (114) arranged between the two layers of the substrate; and in which the at least one attenuation layer is/are heterogeneous.
    Type: Application
    Filed: March 9, 2018
    Publication date: December 10, 2020
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, SOITEC
    Inventors: Thu Trang VO, Jean-Sebastien MOULET, Alexandre REINHARDT, Isabelle HUYET, Alexis DROUIN, Yann SINQUIN
  • Patent number: 10847370
    Abstract: A method for dissolving a buried oxide in a silicon-on-insulator wafer comprises providing a silicon-on-insulator wafer having a silicon layer attached to a carrier substrate via a buried oxide layer, and annealing the silicon-on-insulator wafer to at least partially dissolve the buried oxide layer. The method further comprises a step of providing an oxygen scavenging layer on or over the silicon layer before the annealing step.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: November 24, 2020
    Assignee: Soitec
    Inventor: Frederic Allibert