Patents Assigned to SOOCHOW UNIVERSITY
  • Patent number: 11317573
    Abstract: A modular vertical water storage greening unit includes a water tank (1), a planting groove (2), and a water supply device. The water tank (1) and the planting groove (2) are arranged on a facade of a building. The planting groove (2) is installed at a front wall of the water tank (1). The water supply device includes a main water pipe (14) and a capillary tube (15). A certain amount of water is supplied to the interior of the water tank (1) so as to water a plant in the planting groove (2). A modular vertical water storage greening system includes a plurality of the modular vertical water storage greening units. Compared with conventional facade greening techniques, the unit solves the problems, such as nonuniformity watering of plants, low watering levels, and high maintenance costs.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: May 3, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventor: Jun Zhai
  • Patent number: 11312934
    Abstract: The present invention discloses a piezoelectric ultrasonic microinjection device based on a flexible hinge mechanism. The device includes: a cover, a flexible hinge mechanism, a base, a screw cap and an end cap fixedly assembled together, the base being provided with a pump interface; and a micropipette fixedly mounted in the base, the screw cap and the end cap and extending outward, the micropipette being in communication with the pump interface; wherein the flexible hinge mechanism comprises a housing, a piezoelectric ceramic package module encapsulated in the housing, a central shaft fixedly mounted with the piezoelectric ceramic package module and the base, and a vibration output shaft extending from the piezoelectric ceramic package module into the central shaft, a plurality of flexible hinge beams being disposed between the central shaft and the housing.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 26, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Haibo Huang, Xiwei Gao, Liguo Chen, Fei Zhou, Hao Guo, Lingfeng Chang, Jizhu Liu, Yangjun Wang, Lining Sun
  • Patent number: 11299593
    Abstract: Provided is a fluorosilicone resin and a preparation method thereof. Using pentafluorostyrene as raw material, pentafluorophenethyldimethylchlorosilane is prepared by a hydrosilylation reaction. By means of a polycondensation reaction of the pentafluorophenethyldimethylchlorosilane, trimethylchlorosilane and tetraethyl orthosilicate, a pentafluorophenyl silicone resin is prepared. The preparation method adopts a two-step polycondensation process, which overcomes the disadvantages of a large difference in hydrolysis reactivity between pentafluorophenyldimethylchlorosilane and a copolymerized trialkyl-chlorosilane, and achieves a high yield. The obtained pentafluorophenyl silicone resin has the advantages of superior heat resistance, simple preparation process, low equipment requirements, high availability of raw material, and suitability for mass production. The heat-resistant fluorosilicone resin can be applied in a polymer material, such as a heat-resistant adhesive.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: April 12, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Zhanxiong Li, Yakun Zong, Wulong Li
  • Patent number: 11292777
    Abstract: The present invention provides a method for preparing a cyclic carbonate, which has the advantages of high yield, mild reaction conditions, high catalytic efficiency under room temperature and 1 atm pressure conditions, and wide substrate scopes. It is not only suitable for monosubstituted epoxides, but also suitable for disubstituted epoxides. The method comprises the step of reacting epoxides of Formula (I) with carbon dioxide in the presence of a quaternary ammonium salt and a catalyst, to obtain a cyclic carbonate of Formula (II).
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: April 5, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Yingming Yao, Liye Qu
  • Patent number: 11290193
    Abstract: The present invention discloses a d-dimensional chain teleportation method for random transmission based on measurement results of relay nodes. The method includes: two communicating parties are an information sender Alice and an information receiver Bob, a particle t carries an unknown quantum state and is held by the information sender Alice, Alice holds the particle t and a particle A1, a first intermediate node Charlie 1 holds a particle B1 and a particle A2, a second intermediate node Charlie 2 holds a particle B2 and a particle A3, . . . , and a kth (k=2, 3, . . . , P) intermediate node Charlie k holds a particle Bk and a particle Ak+1. The beneficial effect of the present invention is as follows: any relay node can randomly transmit its generalized Bell measurement result to the information sender Alice or the information receiver Bob, thereby greatly reducing connection restrictions of a classical channel.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: March 29, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Fenxiang Fu, Min Jiang, Zhixin Xia, Hong Chen
  • Patent number: 11261222
    Abstract: A transdermal peptide with a nuclear localization ability and having an amino acid sequence as shown in SEQ ID NO: 1 is disclosed. A fusion protein including a macromolecular protein with one end being linked to the transdermal peptide is also disclosed. The transdermal peptide can be used in the preparation of a medicament or a transdermal preparation for treating skin diseases. A medicament for treating a skin disease includes the transdermal peptide and a pharmaceutically acceptable excipient. The transdermal peptide enters the cells autonomously to locate in the nuclei, and can penetrate through the stratum corneum of the skin into cells in the dermis. The peptide is conveniently synthesized artificially and suitable for transdermal administration, and has a therapeutic potential via transdermal administration by carrying a drug for treating skin diseases.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: March 1, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Shuyu Zhang, Jianping Cao, Daojiang Yu, Wei Zhu
  • Patent number: 11260382
    Abstract: The invention discloses a core-shell structured catalyst comprising a core covered with a shell. The core is made of hematite, tourmaline, germanium, maifanite or kaolin. The invention also provides a method for preparing the catalyst including mixing raw materials of the core with water to form seed-balls with a particle size of 2-4 mm; mixing the seed-balls with raw materials of the shell and water, such that the seed-balls are covered with the raw materials of the shell to form pellets with a particle size of 3-5 mm; processing the pellets at 60-90° C. and then calcining to active the pellets at 450-550° C. to obtain a core-shell structured catalyst. The invention further discloses use of the core-shell structured catalyst in the ozone oxidation reaction. In the invention, a core-shell structured catalyst with good morphology and catalytic performance is prepared, and the production cost of the catalyst is reduced.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: March 1, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Duo Wu, Xingmin Gao, Zhangxiong Wu
  • Patent number: 11261092
    Abstract: The invention provides a method of producing graphene. The method comprising: A) mixing graphite powders with a silk fibroin nanofiber solution, performing mechanical stirring to exfoliate graphite to form graphene flakes; wherein the silk fibroin nanofibers in the silk fibroin nanofiber solution have a crystallinity of 40% or above; the silk fibroin nanofibers have a diameter of 10 to 30 nm; the silk fibroin nanofibers have a length of 100 nm to 3 ?m; the mechanical stirring has a shearing speed of 1,000 to 50,000 rpm; and the duration of the mechanical stirring is 10 min to 6 h; B) centrifuging the solution obtained in step A) after exfoliation to remove unexfoliated graphite; and C) centrifuging the centrifuged solution obtained in step B), and separating graphene from the silk fibroin nanofibers to obtain the graphene.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: March 1, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Qiang Lu, Xiaoyi Zhang, Liying Xiao
  • Patent number: 11232571
    Abstract: The present invention discloses a method and device for quick segmentation of an optical coherence tomography image, a computing device, and a computer readable storage medium. The method includes: extracting a feature value related to a pixel in the optical coherence tomography image from the pixel to obtain a feature value representative of the pixel feature, the feature value including at least one of an intensity gradient value of the pixel, an intensity multi-scale mean value of the pixel, and an angular feature value extracted from the pixel; inputting the feature value into a Sparse Bayesian Classification model containing values related to image features corresponding to a border, to obtain a probability that the image feature belongs to features of various image region borders; and obtaining borders of various image regions contained in a predefined image region based on the probabilities obtained for various pixels in the predefined image region.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: January 25, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Lirong Wang, Meng Gan, Cong Wang
  • Patent number: 11224970
    Abstract: A large area surveillance method is based on weighted double deep Q-learning. A robot which of Q-value table including a QA-value table and QB-value table is provided, an unidentified object enters a large space to trigger the robot, and the robot perceives a current state s and determines whether the current state s is a target state, if yes, the robot reaches a next state and monitors the unidentified object, and if not, the robot reaches a next state, obtains a reward value according to the next state, selectively updates a QA-value or QB-value with equal probability, and then updates a Q-value until convergence to obtain an optimal surveillance strategy. The problems of a limited surveillance area and camera capacity are resolved, and the synchronization of multiple cameras doesn't need to be considered, and thus the cost is reduced. A large area surveillance robot is also disclosed.
    Type: Grant
    Filed: April 8, 2018
    Date of Patent: January 18, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Zongzhang Zhang, Zhiyuan Pan, Hui Wang
  • Patent number: 11224866
    Abstract: The invention discloses a visible light responsive tricobalt tetraoxide dodecahedron/carbon nitride nanosheet composite and an application thereof in exhaust gas treatment. The preparation method of the composite comprises the following steps: with urea as a precursor, carrying out twice calcination to obtain carbon nitride nanosheet; dispersing the carbon nitride nanosheet into methanol, sequentially adding cobalt nitrate hexahydrate and 2-methylimidazole, and carrying out a reaction to obtain a carbon nitride nanosheet composite; and calcining the carbon nitride nanosheet composite in an air atmosphere at a low temperature to obtain the tricobalt tetraoxide dodecahedron/carbon nitride nanosheet composite.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: January 18, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Jianmei Lu, Dongyun Chen
  • Patent number: 11228259
    Abstract: The present invention relates to an energy harvester, including: a base; an electromagnetic coil fixed in the base; a disk-shaped stator magnet fixed at the center of the base; a friction plate fixing ring fixed on the base; at least one friction plate unit fixed on an inner side surface of the friction plate fixing ring; a disk-shaped rotor magnet whose bottom is in contact with the electromagnetic coil, wherein the disk-shaped rotor magnet is attracted and held to the disk-shaped stator magnet, and an outer surface of the disk-shaped rotor magnet is tangent to an outer surface of the disk-shaped stator magnet; and an annular friction plate fixed on the disk-shaped rotor magnet, wherein the annular friction plate and a friction plate are made of materials with different polarities. The foregoing energy harvester has a simple structure and high electrical energy output efficiency.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: January 18, 2022
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Tao Chen, Zhan Yang, Huicong Liu, Lining Sun
  • Patent number: 11207670
    Abstract: The invention discloses a loaded multifunctional catalysis composite material, a preparation method thereof and an application of the composite material to catalytic removal of water pollutants. The preparation method includes the steps: preparing a zinc oxide nano-sheet loaded nickel foam (Ni@ZnO) composite material by an electro-deposition method; compounding molybdenum disulfide micro-nano particles on ZnO porous nano-sheets by an electro-deposition method to obtain Ni@ZnO/MoS2. The composite material Ni@ZnO/MoS2 combines the advantages of components such as nickel foam, the zinc oxide nano-sheets and molybdenum disulfide from the point of material performances, high catalytic degradation activity and recycled performances are achieved, photo-catalysis and electro-catalysis are combined from the point of material application, and the catalytic activity of the composite material is improved by the aid of synergistic effects of photo-catalysis and electro-catalysis.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: December 28, 2021
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Jianmei Lu, Najun Li
  • Patent number: 11201815
    Abstract: The invention relates to a method and system for selecting a least-loaded route based on a naive Bayes classifier, so that the performance of a method for selecting a least-loaded route is improved. A network snapshot records historical network status information, and a naive Bayes classifier is used to predict the potential future network blocking probability if a service connection is established along a candidate route between each node pair. A network snapshot corresponds to each service request that arrives, and records the number of busy capacity units on each link.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: December 14, 2021
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Gangxiang Shen, Longfei Li, Ya Zhang
  • Patent number: 11198112
    Abstract: The invention discloses a dinuclear rhodium complex-doped platinum/hollow mesoporous silica sphere composite material, and a preparation method and an application thereof. The preparation method comprises the following steps: preparing hollow mesoporous silica by a selective etching technology, uniformly distributed a precious metal platinum in the channels of the hollow mesoporous silica by using simple impregnation, and mixing the obtained catalyst with dinuclear rhodium complex adsorbed silica gel to obtain the composite material integrating a chromogenic probe with the catalyst.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: December 14, 2021
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Jianmei Lu, Dongyun Chen
  • Patent number: 11192093
    Abstract: A preparation method of a two-dimensional nitrogen-doped carbon-based titanium dioxide composite material includes: (1) etching Ti3AlC2 with LiF/HCl to prepare two-dimensional transition metal carbide nanosheet; (2) preparing a nanosheet aggregate by electrostatic self-assembly of a two-dimensional transition metal carbide nanosheet and a positively charged nitrogen-containing cationic compound; (3) calcining the nanosheet aggregates to prepare a two-dimensional nitrogen-doped carbon-based titanium dioxide composite material.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: December 7, 2021
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Jianmei Lu, Najun Li
  • Patent number: 11193000
    Abstract: This invention provides a self-healable epoxy resin and its preparation, recycling and remolding method. With the catalyst of potassium iodide, an ester solution of 2-mercaptoacetic acid was oxidated by 30% H2O2 to form 2,2?-dithiodiacetic acid; then 2,2?-dithiodiacetic acid was dehydrated and cyclizated by anhydride to form 1,4,5-oxadithiepane-2,7-dione; 1,4,5-oxadithiepane-2,7-dione and methylhexahydrophthalic anhydride were mixed by mass ratio and cured with epoxides to get the self-healable epoxy resin. Through controlling dynamic and permanent three-dimensional crosslinked network, the self-healable epoxy resins provided in this invention exhibit high thermal resistance and improved mechanical properties as well as excellent self-healing ability, recyclability and remoldability. This invention provides a preparation method with the merits of low cost, simple production processes, broad application prospects and strong utility.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: December 7, 2021
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Guozheng Liang, Youhao Zhang, Aijuan Gu, Li Yuan
  • Patent number: 11193024
    Abstract: The invention discloses a special-purpose reactive disperse dye for waterless dyeing of natural fibers in supercritical CO2 fluid and an intermediate thereof. The reactive disperse dye has a longer alkane-chain bridging group between a chromophoric parent structure and an active group of the dye, which effectively promotes the donating-withdrawing effect on the electron cloud in the conjugated system, enhances the hyperchromic effect, effectively reduce the influence of the active group itself and its reaction on the dye coloring system, improves the color and stability against acid and alkali of the dye, and facilitate the improvement of the compatibility of the dye with supercritical fluid and the dyeing performance for natural fibers as well. The invention also discloses an intermediate of the reactive disperse dye, and a method for preparing the reactive disperse dye.
    Type: Grant
    Filed: November 23, 2018
    Date of Patent: December 7, 2021
    Assignees: SOOCHOW UNIVERSITY, JIANGSU DANMAO TEXTILE CO., LTD., NANTONG TEXTILE AND SILK INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Jiajie Long, Kai Yan, Dao Xu, Jinlin Yu
  • Patent number: 11180437
    Abstract: Disclosed is a method for preparing a 1,3-dicarbonyl compound based on a metal hydride/palladium compound system. The method includes the following steps: suspending a palladium compound and a metal hydride in a solvent under the protection of nitrogen, then adding an electron-deficient olefin compound, reacting same at 0° C.-100° C. for 0.3 to 10 hours, then adding a saturated ammonium chloride aqueous solution to stop the reaction, and then subjecting same to extraction, evaporation until dryness, and column chromatography purification to obtain the 1,3-dicarbonyl compound. The hydride and palladium compound catalysts used by the present invention are reagents easily obtained in a laboratory. Compared to a common hydrogen hydrogenation method, the method is easier to operate, and has a higher safety, mild conditions, and a high reaction yield.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: November 23, 2021
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Shilei Zhang, Yujian Mao
  • Patent number: 11174164
    Abstract: Disclosed are a honeycomb-like homo-type heterojunction carbon nitride composite material and a preparation method thereof, and an application of the honeycomb-like homo-type heterojunction carbon nitride composite material in catalytic treatment of waste gas. The preparation method includes the following steps: with two different carbon nitride precursors namely urea and thiourea as raw materials, weighing certain amounts of the urea and the thiourea, adding the urea and the thiourea into a crucible, adding a certain amount of ultrapure water, placing the crucible in a muffle furnace, and carrying out calcination molding. The honeycomb-like homo-type heterojunction carbon nitride prepared by the one-step method has good photocatalytic effect to catalytic degradation of NO; meanwhile, the honeycomb-like homo-type heterojunction carbon nitride composite material has the advantages of rich and easily-available production raw materials, good stability, reusability, etc.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: November 16, 2021
    Assignee: SOOCHOW UNIVERSITY
    Inventors: Jianmei Lu, Dongyun Chen, Jun Jiang