Abstract: The present invention provides apparatuses, systems and methods for the controllable oxidation of bromide into bromine either directly through electrochemical (EC) anodes or indirectly through electrochemically generated oxidants.
Abstract: The present invention includes an apparatus and method for determining cell coverage in a region with reduced in-field propagation measurements comprising: obtaining geographical features of the region; predicting the number of measurements required to accurately characterize its path loss; determining the path loss prediction accuracy of wardriving and crowdsourcing by oversampling a suburban and a downtown region from cell measurements that comprise signal strength and global positioning system coordinates; and using statistical learning to build a relationship between these geographical features and the measurements required, thereby reducing the number of measurements needed to determine path loss accuracy.
Type:
Grant
Filed:
January 6, 2017
Date of Patent:
March 6, 2018
Assignee:
Southern Methodist University
Inventors:
Matthew Tonnemacher, Dinesh Rajan, Joseph Camp
Abstract: The present invention describes a speech enhancement method using microphone arrays and a new iterative technique for enhancing noisy speech signals under low signal-to-noise-ratio (SNR) environments. A first embodiment involves the processing of the observed noisy speech both in the spatial- and the temporal-domains to enhance the desired signal component speech and an iterative technique to compute the generalized eigenvectors of the multichannel data derived from the microphone array. The entire processing is done on the spatio-temporal correlation coefficient sequence of the observed data in order to avoid large matrix-vector multiplications. A further embodiment relates to a speech enhancement system that is composed of two stages. In the first stage, the noise component of the observed signal is whitened, and in the second stage a spatio-temporal power method is used to extract the most dominant speech component.
Abstract: An integrated circuit has a first scan cell segment, a second scan cell segment connected to one or more hidden content, and a scan cell circuit connected to the first scan cell segment and the second scan cell segment. The scan cell circuit alternatively provides access to the first scan cell segment and the second scan cell segment based on a state of the scan cell circuit.
Abstract: Various integrated circuits protect hidden content e.g., embedded instruments, keys, data, etc.) using scan cell circuit(s). For example, a first scan cell circuit is connected to the hidden content, and a second scan cell circuit is connected to the first scan cell circuit forming all or part of a serial data path. The first scan cell circuit provides access to the hidden content whenever the first scan cell circuit is in a first specified state and prevents access whenever the first scan cell circuit is in a different state. The first scan cell circuit does not interrupt the serial data path when the first scan cell circuit is in the different state. The second scan cell circuit changes an operational characteristic of the first scan cell circuit whenever the second scan cell circuit is in a second specified state. In some cases, the second scan cell circuit can be eliminated.
Type:
Grant
Filed:
March 23, 2015
Date of Patent:
November 7, 2017
Assignee:
Southern Methodist University
Inventors:
Jennifer L. Dworak, Alfred L. Crouch, Adam Zygmontowicz, John C. Potter
Abstract: Methods, apparatuses, and computer program products for squaring an operand include identifying a fixed-point value with a fixed word size and a substring size for substrings of the fixed-point value, wherein the fixed-point value comprises a binary bit string. A square of the fixed-point value can be determined using the fixed point value, the substring size, and least significant bits of the fixed-point value equal to the substring size.
Abstract: The present invention describes a speech enhancement method using microphone arrays and a new iterative technique for enhancing noisy speech signals under low signal-to-noise-ratio (SNR) environments. A first embodiment involves the processing of the observed noisy speech both in the spatial- and the temporal-domains to enhance the desired signal component speech and an iterative technique to compute the generalized eigenvectors of the multichannel data derived from the microphone array. The entire processing is done on the spatio-temporal correlation coefficient sequence of the observed data in order to avoid large matrix-vector multiplications. A further embodiment relates to a speech enhancement system that is composed of two stages. In the first stage, the noise component of the observed signal is whitened, and in the second stage a spatio-temporal power method is used to extract the most dominant speech component.
Abstract: The present disclosure provides a method of treating a subject that is resistant to one or more drugs by identifying a subject having one or more drug resistant cells; administering to the subject a pharmaceutically effective amount of an inhibitor compound, and contacting one or more drug resistant cells with the inhibitor compound to reduce the export of the inhibitor compound from the one or more drug resistant tumor cells and to block the transport of drug(s) from the one or more drug resistant cells.
Type:
Grant
Filed:
January 15, 2015
Date of Patent:
February 7, 2017
Assignee:
Southern Methodist University
Inventors:
John G. Wise, Pia D. Vogel, Frances K. Brewer, Courtney A. Follit
Abstract: The present invention provides pharmaceutical compound of formula: wherein A and B are individually an C or N and R1 is an alkyl and R2 is a substituted phenyl, wherein the substituted phenyl comprises 1 to 3 functional groups and R3-R6 are individually a hydrogen, an amine or a halogen disposed in a pharmaceutical carrier.
Type:
Grant
Filed:
March 23, 2012
Date of Patent:
November 15, 2016
Assignee:
Southern Methodist University
Inventors:
Edward R. Biehl, Haribabu Ankati, Sukanta Kamila
Abstract: An automated calibration device that comprises a tube for trapping a multiphase sample between three ultrasound (US) transducer pairs wherein each of the three transducer pairs is positioned to measure a different fraction of the multiphase sample.
Abstract: The present invention provides multi-thiol mercaptoalkoxysilane compositions and methods of making multi-thiol mercaptoalkoxysilane compositions having the formula: wherein the R3 group, and the R4 group are independently an alkoxy, a halogen, an alkyl, an aryl, a heteroaryl, a heterocycle or derivatives thereof and n is an integer between 1 and 30.
Abstract: The present invention includes a digital controller for use with an ultrasound power amplifier circuit to increase linearity and efficiency of the ultrasound power amplifier circuit. The digital controller includes a digital signal generator and a memory unit that is coupled to the digital signal generator. The memory unit includes a processor that obtains an output signal from the ultrasound power amplifier circuit, calculates error by obtaining a difference between an ideal output signal and the output signal that is obtained from the ultrasound power amplifier circuit, and equalizes an input signal from the digital signal generator to reduce nonlinearity in the output signal of the ultrasound power amplifier circuit. The memory unit includes a look-up-table for storing values of error.
Abstract: The present invention provides methods of making and using 5-(2-(indol-3-yl)-2-oxoethylidene)-3-phenyl-2-thioxothiazolidin-4-one derivatives having HIV-1 or JSP-1 inhibitory activity.
Type:
Grant
Filed:
March 22, 2013
Date of Patent:
April 12, 2016
Assignees:
Southern Methodist University, Johns Hopkins University
Inventors:
Edward R. Biehl, Sukanta Kamila, Ted M. Dawson
Abstract: The present invention provides multi-thiol mercaptoalkoxysilane compositions and methods of making multi-thiol mercaptoalkoxysilane compositions having the formula: wherein the R3 group, and the R4 group are independently an alkoxy, a halogen, an alkyl, an aryl, a heteroaryl, a heterocycle or derivatives thereof and n is an integer between 1 and 30.
Abstract: A system and method for providing multi-dimensional context-aware adaptation in vehicular networks is disclosed. The system comprises a collection module, a context resolving module, a parameter determination module and a distribution module. The collection module collects context data describing a context in a communication environment. The context resolving module resolves the context data to a matching historical context and determines one or more historical context groups associated with the matching historical context. The parameter determination module determines a subset of operating parameters from the one or more historical context groups. The distribution module distributes the subset of operating parameters to a network stack communication module.
Type:
Grant
Filed:
September 14, 2012
Date of Patent:
October 27, 2015
Assignees:
TOYOTA JIDOSHA KABUSHIKI KAISHA, Southern Methodist University
Inventors:
Joseph Camp, Onur Altintas, Rama Krishna Vuyyuru, Dinesh Rajan
Abstract: According to one embodiment, a system includes at least one memory and at least one processor. The processor receives information that includes a position or motion of one or more points of a body during a movement. Based at least on the position or motion of the one or more points of the body during the movement, the processor calculates a first one or more curves indicative of a first force between a surface and at least a first portion of the body, and calculates a second one or more curves indicative of a second force between the surface and at least a second portion of the body. The processor further predicts a force applied to the surface by the body during the movement by combining the first and second one or more curves.
Type:
Grant
Filed:
January 28, 2013
Date of Patent:
August 18, 2015
Assignee:
Southern Methodist University
Inventors:
Peter G. Weyand, Kenneth P. Clark, Laurence J. Ryan
Abstract: Systems and methods can be configured to perform operations related to digital image processing. In a general aspect, this disclosure describes systems and methods relating to processing digital images for imaging system characterization and image quality enhancement. In some implementations, a method for digital image processing includes measuring a first phase transfer function (PTF) of a first digital image and a second PTF of a second digital image. The second digital image captures a spatially shifted version of the first digital image. The first PTF and the second PTF are compared and a spatial shift of the second image to the first image is determined.
Type:
Grant
Filed:
April 19, 2012
Date of Patent:
May 12, 2015
Assignee:
Southern Methodist University
Inventors:
Vikrant R. Bhakta, Manjunath Somayaji, Marc P. Christensen