Patents Assigned to State University
  • Patent number: 11802207
    Abstract: Methods of preparing a lignocellulosic biomass-based thermoplastic composition are described. In some embodiments, the method comprises: (a) preparing a mixture of solids comprising lignocellulosic biomass, a meltable solvent and a polyester; and (b) melt-compounding said mixture of solids; thereby preparing a lignocellulosic biomass-based thermoplastic composition. Fibers produced by the methods are also described, as are yarns and fabrics comprising the fibers.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: October 31, 2023
    Assignee: North Carolina State University
    Inventors: Ericka N. Ford, Manik Chandra Biswas
  • Patent number: 11801246
    Abstract: A method of treating a subject suffering from an ischemic disease associated with Ca2+ overload is provided, the method including administering to the subject an effective amount of an inhibitor of Ataxia telangiectasia and Rad3-related (ATR) kinase. Also provided is a method of treating a subject suffering from acute ischemic stroke, the method including administering to the subject an effective amount of the ATR kinase inhibitor berzosertib.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: October 31, 2023
    Assignee: EAST TENNESSEE STATE UNIVERSITY RESEARCH FOUNDATIO
    Inventors: Theodoor Hagg, Yue Zou
  • Patent number: 11802201
    Abstract: A curable green epoxy resin composition is described. More particularly, the curable green epoxy resin composition includes a biobinder isolated from bio-oil produced from animal waste, such as from swine manure. The biobinder can act as a curing agent for an epoxy resin component in the resin composition. Cured green epoxy resins, prepregs containing the curable green epoxy resin, and related composite materials are described. In addition, methods of preparing the curable green epoxy resin composition and of curing the curable green epoxy resin.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: October 31, 2023
    Assignee: North Carolina Agricultural and Technical State University
    Inventors: Lifeng Zhang, Elham H. Fini, Sidharth Reddy Karnati
  • Patent number: 11800882
    Abstract: The present invention describes a bio-based process to produce high quality protein concentrate (HQPC) by converting plant derived celluloses into bioavailable protein via aerobic incubation, including the use of such HQPC so produced as a nutrient, including use as a fish meal replacement in aquaculture diets.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: October 31, 2023
    Assignee: The South Dakota Board of Regents, as Governing Board for South Dakota State University
    Inventors: William Gibbons, Michael L. Brown
  • Patent number: 11801008
    Abstract: Methods and system are described for multi-modal, multi-parametric, non-invasive, and real-time assessment of cervical tissue through a multi-modal probe device for use within a vaginal canal and an associated imaging system to assess a risk of preterm delivery of an expectant mother. The multi-modal system may include ultrasound (US) imaging, viscoelastic (VE) imaging, and/or photoacoustic (PA) imaging of the cervical issue to determine cervical biomarker information indicative of parameters including, but not limited to, a collagen to water ratio such that a more water dominant ratio is indicative of a risk of preterm delivery.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 31, 2023
    Assignee: Wayne State University
    Inventors: Mohammad Mehrmohammadi, Sonia S. Hassan, Edgar Hernandez-Andrade, Yan Yan, Maryam Basij, Nardhy Gomez-Lopez
  • Patent number: 11802204
    Abstract: The disclosure relates to a thermoset omniphobic composition (such as an omniphobic polyurethane or epoxy composition) which includes a thermoset polymer with first, second, and third backbone segments. The first, second, and third backbone segments can correspond to urethane or urea reaction products of polyisocyanate(s), amine-functional omniphobic polymer(s), and polyol(s), respectively, for omniphobic polyurethanes. Similarly, the first, second, and third backbone segments can correspond to urea or beta-hydroxy amine reaction products of polyamine(s), isocyanate-functional omniphobic polymer(s), and polyepoxide(s), respectively, for omniphobic epoxies. The thermoset omniphobic composition has favorable omniphobic properties, for example as characterized by water and/or oil contact and/or sliding angles. The thermoset omniphobic composition further has favorable barrier properties, for example with respect to water vapor and oxygen transmission as well as water absorption.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: October 31, 2023
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventor: Muhammad Rabnawaz
  • Publication number: 20230341415
    Abstract: Systems, kits, methods to diagnose sarcoidosis are described. In addition to diagnosing sarcoidosis, the systems and methods can distinguish sarcoidosis from tuberculosis and lung cancer.
    Type: Application
    Filed: October 13, 2022
    Publication date: October 26, 2023
    Applicant: Wayne State University
    Inventor: Lobelia Samavati
  • Publication number: 20230340224
    Abstract: A method for producing and recycling a crosslinked photopolymer is disclosed. The method includes mixing reactive thiols, multifunctional alkenes, and a photoinitiator to create a homogeneous mixture that is crosslinked through exposure to light. The method also includes decrosslinking the crosslinked photopolymer through base-catalyzed thiol-disulfide exchange reactions by mixing the crosslinked photopolymer with a reactive thiol, a base catalyst, and a solvent to create a decrosslinked material including recycled thiol oligomers which are reactive. The method further includes removing the base catalyst and the solvent and recrosslinking the recycled thiol oligomers by mixing stoichiometric amounts of the recycled thiol oligomers and a reactive alkene such that a molar ratio between thiol end groups and ene end groups is maintained at 1:1. The method includes adding a photoinitiator and mixing to create a homogeneous mixture, and recrosslinking the homogeneous mixture through exposure to light.
    Type: Application
    Filed: April 20, 2023
    Publication date: October 26, 2023
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Kailong Jin, Saleh Alfarhan
  • Publication number: 20230338575
    Abstract: Disclosed herein are embodiments of a nanoparticle suitable for use in providing hyperthermia treatment. The nanoparticle may be a cobalt-doped iron oxide nanoparticle. Also disclosed are compositions comprising the nanoparticle. The composition may further comprise a polymer and/or a targeting moiety. Further disclosed and methods for making the nanoparticle and the composition, and embodiments of a method for using the nanoparticle or a composition thereof. The nanoparticle may be useful for treating cancer, and/or endometriosis.
    Type: Application
    Filed: March 20, 2023
    Publication date: October 26, 2023
    Applicants: Oregon State University, Oregon Health & Science Univesity
    Inventors: Olena Taratula, Oleh Taratula, Ananiya A. Demessie, Ov Slayden, Youngrong Park
  • Publication number: 20230342604
    Abstract: Dynamic additive attention adaption for memory-efficient multi-domain on-device learning is provided. Almost all conventional methods for multi-domain learning in deep neural networks (DNNs) only focus on improving accuracy with minimal parameter update, while ignoring high computing and memory cost during training. This makes it difficult to deploy multi-domain learning into resource-limited edge devices, like mobile phones, internet-of-things (IoT) devices, embedded systems, and so on. To reduce training memory usage, while keeping the domain adaption accuracy performance, Dynamic Additive Attention Adaption (DA3) is proposed as a novel memory-efficient on-device multi-domain learning approach. Embodiments of DA3 learn a novel additive attention adaptor module, while freezing the weights of the pre-trained backbone model for each domain.
    Type: Application
    Filed: April 21, 2023
    Publication date: October 26, 2023
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Li Yang, Deliang Fan, Adnan Siraj Rakin
  • Publication number: 20230341713
    Abstract: A dynamic nanophotonic filter and method for tuning and fabricating the same is disclosed. The filter includes a transparent substrate, a first layer of thermochromic VO2 deposed on the substrate with a first thickness, a spacer layer having a spacer thickness and composed of a dielectric material deposed on the first layer, and a second layer of thermochromic VO2 deposed on the spacer layer such that the spacer layer is sandwiched between the second and first layer. The dynamic nanophotonic filter changes between a semi-transparent state and an opaque state based on temperature. The semi-transparent state includes the first and second layers being insulating. The opaque state includes the first layer and the second layer both being metallic. The first thickness, the second thickness, and the spacer thickness are chosen to tune how the dynamic nanophotonic filter behaves in the semi-transparent state and the opaque states.
    Type: Application
    Filed: April 20, 2023
    Publication date: October 26, 2023
    Applicant: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeremy Chao, Liping Wang, Sydney Taylor
  • Publication number: 20230341414
    Abstract: Provided are systems and methods for assessing the presence or risk of obstetrical complications, particularly those related to an angiogenic and anti-angiogenic imbalance. Also provided are methods of treating an angiogenic and anti-angiogenic imbalance with water-soluble statins, such as pravastatin.
    Type: Application
    Filed: May 10, 2023
    Publication date: October 26, 2023
    Applicants: Wayne State University, The United States of America as Represented by the Secretary., Dept. of Health and Human Services
    Inventors: Tinnakorn Chaiworapongsa, Roberto Romero, Sonia S. Hassan
  • Publication number: 20230342414
    Abstract: A machine-learning framework for multi-fidelity modeling provides three components: multi-fidelity data compiling, multi-fidelity perceptive field and convolution, and deep neural network for mapping. This framework captures and utilizes implicit relationships between any high-fidelity datum and all available low-fidelity data using a defined local perceptive field and convolution. First, the framework treats multi-fidelity data as image data and processes them using a CNN, which is very scalable to high dimensional data with more than two fidelities. Second, the flexibility of nonlinear mapping facilitates the multi-fidelity aggregation and does not need to assume specific relationships among multiple fidelities. Third, the framework does not assume that multi-fidelity data are at the same order or from the same physical mechanisms (e.g., assumptions are needed for some error estimation-based multi-fidelity model).
    Type: Application
    Filed: March 31, 2023
    Publication date: October 26, 2023
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventor: Yongming Liu
  • Patent number: 11799035
    Abstract: Various gate all-around field effect transistors (GAAFET) including quantum-based features are disclosed. GAAFET may include a center core including a first end and a second end, a source region positioned circumferentially around the first end of the center core, and a drain region positioned circumferentially around the second end of the center core. The drain region may also be positioned axially opposite the source region. The GAAFET may also include a gate portion axially positioned between the source region and the drain region. The gate portion may include at least one quantum-based feature circumferentially disposed around the center core, and a gate contact circumferentially disposed around the quantum-based feature(s). The quantum-based feature(s) may include a plurality of quantum dots (QD) or at least one quantum well channel.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: October 24, 2023
    Assignee: The Research Foundation for the State University of New York
    Inventor: Supriyo Karmakar
  • Patent number: 11793179
    Abstract: Livestock animals and progeny thereof comprising at least one edited chromosomal sequence that alters expression or activity of a somatostatin receptor (SSTR) protein are provided. Livestock animal cells that contain such edited chromosomal sequences are also provided. The livestock animals have improved growth performance and weight gain. Methods for producing livestock animals with increased growth performance are also provided.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: October 24, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Jason Wayne Ross, Ronald Blythe Schultz, Nicholas Kurt Gabler
  • Patent number: 11793431
    Abstract: A system with an analyzer device in fluid communication with a sample of a bodily fluid is configured to chemically or electrochemically convert at least a portion of ammonium (NH4+) contained within the bodily fluid into ammonia (NH3) and dispel the converted ammonia (NH3) into a gas sensing chamber. An ammonia (NH3) sensor located within the gas sensing chamber in conjunction with a processor can quantify an amount of ammonia (NH3) present in the gas sensing chamber in relation to the total ammonia of the bodily fluid.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: October 24, 2023
    Assignees: Mayo Foundation for Medical Education and Research, Arizona Board of Regents on behalf of Arizona State University
    Inventors: Marylaura Thomas, Leslie Thomas, Erica Forzani
  • Patent number: 11793210
    Abstract: Disclosed herein are embodiments of a composition for use in forming films or coatings that prevent damage in foodstuffs, including plants, fruits, and vegetables. The disclosed compositions comprise a cellulose nanomaterial and can further comprise a nanoscale mineral compound and one or more additional components. Also disclosed are films or coatings made using the disclosed compositions, as well as methods for making the disclosed compositions and methods for using the disclosed compositions.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: October 24, 2023
    Assignee: Oregon State University
    Inventors: Yanyun Zhao, John Simonsen, George Cavender, Jooyeoun Jung, Leslie H. Fuchigami
  • Patent number: 11798706
    Abstract: A method includes accelerating an electron bunch along a direction of propagation to a relativistic energy and partitioning the electron bunch by transmitting the electron bunch through a grating at the relativistic energy. The grating includes a plurality of alternating narrow portions and wide portions. The narrow portions have a first thickness in a direction substantially parallel to the direction of propagation of the electron bunch, and the wide portions have a second thickness in the direction substantially parallel to the direction of propagation of the electron bunch. The second thickness is greater than the first thickness. The method also includes generating a pulse of light using the partitioned electron bunch.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: October 24, 2023
    Assignee: Arizona Board of Regents on Behalf of Arizona State University
    Inventor: William Graves
  • Patent number: 11795243
    Abstract: The present invention relates to a modified polymer having the structure of Formula (I) and Formula (IV): wherein A, R1, R2, R3, a, and n are as described herein and wherein R, R?, R?, x, and k are as described herein and methods for preparation thereof. The present invention also relates to a compound having the structure of Formula (II): wherein A, R1, R2, R3, a, and n are as described herein. The present invention also relates to a process for polymerizing unsaturated hydrocarbon monomers.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: October 24, 2023
    Assignees: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC., KUMHO PETROCHEMICAL
    Inventors: Aaron David Sadow, Bradley M. Schmidt, Gwanghoon Kwag, Hanbaek Lee, Dong Eun Kang
  • Patent number: 11794757
    Abstract: Embodiments described herein improve fuel economy by controlling a vehicle powertrain based on a predicted vehicle velocity. The vehicle velocity is predicted based on vehicle-to-vehicle data when a prediction horizon is a longer prediction horizon and the vehicle velocity is predicted based on historical drive cycle data when the prediction horizon is a shorter prediction horizon. A time duration of the shorter prediction horizon is shorter than the time duration of the longer prediction horizon. A plurality of drive cycles are established for both the longer and the shorter prediction horizons using a neural network. A shorter prediction horizon drive cycle uses nonlinear autoregressive exogenous model neural networks and the longer prediction horizon drive cycle uses two layer feedforward neural networks. The predicted vehicle velocity is determined from a similar drive cycle of the plurality of drive cycles of either the shorter and/or the longer prediction horizon drive cycles.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 24, 2023
    Assignee: Colorado State University Research Foundation
    Inventors: Zachary Asher, David Baker, Thomas H. Bradley