Patents Assigned to Stats Chippac Ltd.
  • Patent number: 9349723
    Abstract: A flip chip semiconductor device has a substrate with a plurality of active devices formed thereon. A passive device is formed on the substrate by depositing a first conductive layer over the substrate, depositing an insulating layer over the first conductive layer, and depositing a second conductive layer over the insulating layer. The passive device is a metal-insulator-metal capacitor. The deposition of the insulating layer and first and second conductive layers is performed without photolithography. An under bump metallization (UBM) layer is formed on the substrate in electrical contact with the plurality of active devices. A solder bump is formed over the UBM layer. The passive device can also be a resistor by depositing a resistive layer over the first conductive layer and depositing a third conductive layer over the resistive layer. The passive device electrically contacts the solder bump.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: May 24, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Haijing Cao, Qing Zhang, Robert C. Frye
  • Patent number: 9349616
    Abstract: A semiconductor device includes a semiconductor die. An encapsulant is deposited over the semiconductor die. An insulating layer is formed over the encapsulant and a first surface of the semiconductor die. A semiconductor component is disposed over the insulating layer and first surface of the semiconductor die. A first interconnect structure is formed over the encapsulant and first surface of the semiconductor die to embed the semiconductor component. A conductive via is formed in the semiconductor die. A heat sink is formed over the semiconductor die. A second interconnect structure is formed over a second surface of the semiconductor die opposite the first surface. A conductive layer is formed over the semiconductor component. An opening is formed in the insulating layer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 24, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KyungHoon Lee, HyunJin Song, Kyoungll Huh, DaeSik Choi
  • Publication number: 20160141238
    Abstract: A semiconductor device has a semiconductor die with an encapsulant deposited over and around the semiconductor die. An interconnect structure is formed over a first surface of the encapsulant. An opening is formed from a second surface of the encapsulant to the first surface of the encapsulant to expose a surface of the interconnect structure. A bump is formed recessed within the opening and disposed over the surface of the interconnect structure. A semiconductor package is provided. The semiconductor package is disposed over the second surface of the encapsulant and electrically connected to the bump. A plurality of interconnect structures is formed over the semiconductor package to electrically connect the semiconductor package to the bump. The semiconductor package includes a memory device. The semiconductor device includes a height less than 1 millimeter. The opening includes a tapered sidewall formed by laser direct ablation.
    Type: Application
    Filed: January 27, 2016
    Publication date: May 19, 2016
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Seung Wook Yoon, Jose A. Caparas, Yaojian Lin, Pandi C. Marimuthu, Kang Chen, Xusheng Bao, Jianmin Fang
  • Patent number: 9345148
    Abstract: A semiconductor device has a semiconductor die having a plurality of bumps formed over a surface of the semiconductor die. The bumps can include a fusible portion and non-fusible portion. Conductive traces are formed over the substrate with interconnect sites having an exposed sidewall and sized according to a design rule defined by SRO+2*SRR?2X, where SRO is an opening over the interconnect site, SRR is a registration for the manufacturing process, and X is a function of a thickness of the exposed sidewall of the contact pad. The bumps are misaligned with the interconnect sites by a maximum distance of X which ranges from 5 to 20 microns. The bumps are bonded to the interconnect sites so that the bumps cover a top surface and side surface of the interconnect sites. An encapsulant is deposited around the bumps between the semiconductor die and substrate.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: May 17, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 9343396
    Abstract: A semiconductor wafer contains semiconductor die. A first conductive layer is formed over the die. A resistive layer is formed over the die and first conductive layer. A first insulating layer is formed over the die and resistive layer. The wafer is singulated to separate the die. The die is mounted to a temporary carrier. An encapsulant is deposited over the die and carrier. The carrier and a portion of the encapsulant and first insulating layer is removed. A second insulating layer is formed over the encapsulant and first insulating layer. A second conductive layer is formed over the first and second insulating layers. A third insulating layer is formed over the second insulating layer and second conductive layer. A third conductive layer is formed over the third insulating layer and second conductive layer. A fourth insulating layer is formed over the third insulating layer and third conductive layer.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: May 17, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Robert C. Frye, Pandi Chelvam Marimuthu, Kai Liu
  • Patent number: 9343429
    Abstract: A semiconductor device is made by creating a gap between semiconductor die on a wafer. An insulating material is deposited in the gap. A first portion of the insulating material is removed from a first side of the semiconductor wafer to form a first notch. The first notch is less than a thickness of the semiconductor die. A conductive material is deposited into the first notch to form a first portion of the conductive via within the gap. A second portion of the insulating material is removed from a second side of the semiconductor wafer to form a second notch. The second notch extends through the insulating material to the first notch. A conductive material is deposited into the second notch to form a second portion of the conductive via within the gap. The semiconductor wafer is singulated through the gap to separate the semiconductor die.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: May 17, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do
  • Patent number: 9337116
    Abstract: A semiconductor substrate has a plurality of different size recesses formed in the substrate to provide a stepped interposer. A conductive via can be formed through the stepped interposer. An insulating layer follows a contour of the stepped interposer. A conductive layer is formed over the insulating layer following the contour of the stepped interposer. A first semiconductor die is partially disposed in a first recess and electrically connected to the conductive layer. A second semiconductor die is partially disposed in a second recess and electrically connected to the conductive layer. The first semiconductor die is electrically connected to the second semiconductor die through the conductive layer. The first and second semiconductor die can be flipchip type semiconductor die. An encapsulant is deposited over the first and second semiconductor die. A portion of the stepped interposer can be removed to reduce thickness.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: May 10, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin, Jun Mo Koo
  • Patent number: 9337141
    Abstract: A semiconductor device has a substrate with an inductor formed on its surface. First and second contact pads are formed on the substrate. A passivation layer is formed over the substrate and first and second contact pads. A protective layer is formed over the passivation layer. The protective layer is removed over the first contact pad, but not from the second contact pad. A conductive layer is formed over the first contact pad. The conductive layer is coiled on the surface of the substrate to produce inductive properties. The formation of the conductive layer involves use of a wet etchant. The second contact pad is protected from the wet etchant by the protective layer. The protective layer is removed from the second contact pad after forming the conductive layer over the first contact pad. An external connection is formed on the second contact pad.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: May 10, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Haijing Cao, Qing Zhang
  • Patent number: 9337161
    Abstract: A method of manufacture of an integrated circuit package system includes: attaching a first die to a first die pad; connecting electrically a second die to the first die through a die interconnect positioned between the first die and the second die; connecting a first lead adjacent the first die pad to the first die; connecting a second lead to the second die, the second lead opposing the first lead and adjacent the second die; and providing a molding material around the first die, the second die, the die interconnect, the first lead and the second lead, with a portion of the first lead exposed.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: May 10, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Dioscoro A. Merilo, Henry Descalzo Bathan, Lionel Chien Hui Tay
  • Patent number: 9331007
    Abstract: A semiconductor device has a semiconductor die with an encapsulant deposited over and around the semiconductor die. An opening is formed in a first surface of the encapsulant by etching or LDA. A plurality of bumps is optionally formed over the semiconductor die. A bump is recessed within the opening of the encapsulant. A conductive ink is formed over the first surface of the encapsulant, bump and sidewall of the opening. The conductive ink can be applied by a printing process. An interconnect structure is formed over a second surface of the encapsulant opposite the first surface of the encapsulant. The interconnect structure is electrically connected to the semiconductor die. A semiconductor package is disposed over the first surface of the encapsulant with a plurality of bumps electrically connected to the conductive ink layer. The semiconductor package may contain a memory device.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: May 3, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Insang Yoon, Flynn Carson, Il Kwon Shim, SeongHun Mun
  • Patent number: 9330994
    Abstract: A semiconductor device has a semiconductor die and encapsulant deposited over the semiconductor die. An insulating layer is formed over the semiconductor die and encapsulant. A first channel including a first conductive surface is formed in the insulating layer by laser radiation. A laser-activated catalyst is infused in the insulating layer to form the first conductive surface in the first channel upon laser radiation. A vertical interconnect is formed through the encapsulant. A first conductive layer is formed in the first channel over the first conductive surface. A second channel including a second conductive surface is formed in the encapsulant by laser radiation. The catalyst is infused in the encapsulant to form the second conductive surface in the second channel upon laser radiation. A second conductive layer is formed in the second channel over the second conductive surface. An interconnect structure is formed over the first conductive layer.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: May 3, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Bartholomew Liao, Sheila Marie L. Alvarez, HeeJo Chi, Kelvin Dao
  • Patent number: 9331003
    Abstract: An integrated circuit packaging system, and method of manufacture thereof, includes: lead islands; a pre-molded material surrounding a bottom of the lead islands; a device over a portion of the lead islands and having electrical connections to another portion of the lead islands, the electrical connections over areas of the another portion of the lead islands over areas covered by the pre-molded material; and an encapsulation over the device and the lead islands.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: May 3, 2016
    Assignee: STATS ChipPac Ltd.
    Inventors: Zigmund Ramirez Camacho, Bartholomew Liao Chung Foh, Sheila Marie L. Alvarez, Dao Nguyen Phu Cuong, HeeJo Chi
  • Patent number: 9330945
    Abstract: An integrated circuit package system with multi-chip module is provided including: providing an upper substrate having an upper chip thereon; positioning a lower chip under the upper chip, the lower chip having bottom interconnects thereon; encapsulating the upper chip and the lower chip with a chip encapsulant on the upper substrate with the bottom interconnects exposed; mounting the lower chip over a lower substrate with a gap between the chip encapsulant and the lower substrate; and filling the gap with a package encapsulant or chip attach adhesive.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: May 3, 2016
    Assignee: STATS ChipPAC Ltd.
    Inventors: Sungmin Song, SeungYun Ahn, JoHyun Bae, Jong-Woo Ha
  • Patent number: 9331002
    Abstract: A semiconductor device is made by providing a first semiconductor wafer having semiconductor die. A gap is made between the semiconductor die. An insulating material is deposited in the gap. A portion of the insulating material is removed to form a first through hole via (THV). A conductive lining is conformally deposited in the first THV. A solder material is disposed above the conductive lining of the first THV. A second semiconductor wafer having semiconductor die is disposed over the first wafer. A second THV is formed in a gap between the die of the second wafer. A conductive lining is conformally deposited in the second THV. A solder material is disposed above the second THV. The second THV is aligned to the first THV. The solder material is reflowed to form the conductive vias within the gap. The gap is singulated to separate the semiconductor die.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: May 3, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Linda Pei Ee Chua
  • Publication number: 20160118332
    Abstract: A method of making a semiconductor device comprises the steps of providing a first manufacturing line, providing a second manufacturing line, and forming a first redistribution interconnect structure using the first manufacturing line while simultaneously forming a second redistribution interconnect structure using the second manufacturing line. The method further includes the steps of testing a first unit of the first redistribution interconnect structure to determine a first known good unit (KGU), disposing a known good semiconductor die (KGD) over the first KGU of the first redistribution interconnect structure, testing a unit of the second redistribution interconnect structure to determine a second known good unit (KGU, and disposing the second KGU of the second redistribution interconnect structure over the first KGU of the first redistribution interconnect structure and the KGD. A resolution of the second manufacturing line is greater than a resolution of the first manufacturing line.
    Type: Application
    Filed: October 20, 2015
    Publication date: April 28, 2016
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Yaojian Lin
  • Publication number: 20160118333
    Abstract: A method of making a semiconductor device comprising the steps of providing a first manufacturing line, providing a second manufacturing line, and forming a first redistribution interconnect structure using the first manufacturing line while forming a second redistribution interconnect structure using the second manufacturing line. The method further includes the steps of testing a first unit of the first redistribution interconnect structure to determine a first known good unit (KGU), disposing a known good semiconductor die (KGD) over the first KGU of the first redistribution interconnect structure, and dicing the first KGU and KGD from the first redistribution interconnect structure.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 28, 2016
    Applicant: STATS ChipPAC, Ltd.
    Inventor: Yaojian Lin
  • Patent number: 9324673
    Abstract: A method of manufacture of an integrated circuit packaging system includes: removing a portion of a leadframe to form a partially removed region and an upper portion of a peripheral lead on the leadframe first side; mounting a first integrated circuit over the partially removed region with a first adhesive; forming a first molding layer directly on the first integrated circuit and the peripheral lead; removing a portion of a leadframe second side exposing the first adhesive; mounting a second integrated circuit on the first adhesive of the first integrated circuit; forming a first interconnection layer directly on the first integrated circuit with the first integrated circuit and the peripheral lead electrically connected; and forming a second interconnection layer directly on the second integrated circuit with the second integrated circuit and the peripheral lead electrically connected.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: April 26, 2016
    Assignee: STATS ChipPAC Ltd.
    Inventor: Zigmund Ramirez Camacho
  • Patent number: 9324672
    Abstract: In a semiconductor device, a plurality of conductive pillars is formed over a temporary carrier. A dual-active sided semiconductor die is mounted over the carrier between the conductive pillars. The semiconductor die has first and second opposing active surfaces with first contact pads on the first active surface and second contact pads on the second active surface. An encapsulant is deposited over the semiconductor die and temporary carrier. A first interconnect structure is formed over a first surface of the encapsulant. The first interconnect structure is electrically connected to the conductive pillars and first contact pads of the dual-active sided semiconductor die. The temporary carrier is removed. A second interconnect structure is formed over a second surface of the encapsulant opposite the first surface of the encapsulant. The second interconnect structure is electrically connected to the conductive pillars and second contact pads of the dual-active sided semiconductor die.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: April 26, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Reza A. Pagaila
  • Patent number: 9324700
    Abstract: A semiconductor device is made by providing a substrate, forming a first insulation layer over the substrate, forming a first conductive layer over the first insulation layer, forming a second insulation layer over the first conductive layer, and forming a second conductive layer over the second insulation layer. A portion of the second insulation layer, first conductive layer, and second conductive layer form an integrated passive device (IPD). The IPD can be an inductor, capacitor, or resistor. A plurality of conductive pillars is formed over the second conductive layer. One conductive pillar removes heat from the semiconductor device. A third insulation layer is formed over the IPD and around the plurality of conductive pillars. A shield layer is formed over the IPD, third insulation layer, and conductive pillars. The shield layer is electrically connected to the conductive pillars to shield the IPD from electromagnetic interference.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: April 26, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Jianmin Fang, Kang Chen, Haijing Cao
  • Patent number: 9324584
    Abstract: System and method of manufacturing an integrated circuit packaging system using transferable trace lead frame. A lead frame is provided having lower metal contacts. A masking layer can be formed on an upper surface of the lead frame for protection and shielding purposes. Routing layer and conductive lands may subsequently be formed by shaping the lead frame, along with bottom encapsulation. The masking layer may subsequently be removed for additional processing steps including connecting an integrated circuit die to the upper surface of the lead frame.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 26, 2016
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua