Patents Assigned to STC.UNM
  • Patent number: 10221446
    Abstract: This disclosure describes a structured polynucleotide, devices that include the structured polynucleotide, and methods involving the structured polynucleotide and/or devices. Generally, the structured polynucleotide includes five domains. A first domain acts as a toehold for an input DNA logic gate to initiate binding to an SCS biomolecule. A second domain acts as a substrate recognition sequence for an upstream DNA logic gate. A third domain acts as a toehold for a output DNA logic gate to initiate binding of the SCS biomolecule to the gate. A fourth domain acts as an effector sequence to alter the state of the output logic gate. A fifth domain acts as a cage sequence to lock the effector sequence in an inactive state until an input gate binds to the structured polynucleotide.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: March 5, 2019
    Assignee: STC.UNM
    Inventors: Carl Brown, III, Steven Wayde Graves, Darko Stefanovic, Matthew Richard Lakin
  • Patent number: 10216965
    Abstract: This disclosure describes techniques for generating physically unclonable functions (PUF) from non-volatile memory cells. The PUFs leverage resistance variations in non-volatile memory cells. Resistance variations in array of non-volatile memory cells may be produce a bitstring during an enrollment process. The bitstring may be stored in the non-volatile memory array. Regeneration may include retrieving the bitstring from the non-volatile memory array.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: February 26, 2019
    Assignee: STC.UNM
    Inventors: James Plusquellic, Swarup Bhunia
  • Publication number: 20190056184
    Abstract: The present prevention provides a surface coating for cooling a surface by light scattering comprising a plurality of successive layers, each of the layers may be comprised of a plurality of spheres arranged to form a structure comprised of packed spheres. Each layer may have a different arrangement of packed spheres to create to a different light scattering property in each of the layers. The coating of the structures may also be formed by randomly packed spheres and the spheres may have a uniform diameter.
    Type: Application
    Filed: October 17, 2016
    Publication date: February 21, 2019
    Applicant: STC.UNM
    Inventors: Sang Eon Han, Sang M. Han
  • Patent number: 10190370
    Abstract: The present invention provides a self-healing wellbore seal system comprising a casing, a fiber reinforced polymer layer, and layer of polymer cement. The layers are bonded together and configured to create a low permeable and ductile seal at discrete locations of the wellbore or along the wellbore. The polymer layer may be chemically bonded to the casing and inhibits the formation of a microannulus at the casing. The polymer layer may be an aramid fiber reinforced polymer, a fiber reinforced polymer layer, or a glass reinforced polymer layer.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: January 29, 2019
    Assignee: STC.UNM
    Inventors: Mahmoud Reda Taha, John Stormont
  • Patent number: 10192709
    Abstract: The present invention provides a relativistic magnetron including an anode with an entrant channel, the channel having an input end, an output end and a dimensional discontinuity between the ends. The channel is connected to the magnetron and has an anode defining an interaction space located between the dimensional discontinuity and output end. Also provided is a cathode, located upstream, a spaced distance away from the interaction space towards the input end, the cathode is adapted to send an electron beam into the interaction space where the electron beam forms a virtual cathode in the interaction space.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: January 29, 2019
    Assignee: STC.UNM
    Inventors: Edl Schamiloglu, Mikhail I. Fuks
  • Patent number: 10184930
    Abstract: Methods and apparatus for long read, label-free, optical nanopore long chain molecule sequencing. In general, the present disclosure describes a novel sequencing technology based on the integration of nanochannels to deliver single long-chain molecules with widely spaced (>wavelength), ˜1-nm aperture “tortuous” nanopores that slow translocation sufficiently to provide massively parallel, single base resolution using optical techniques. A novel, directed self-assembly nanofabrication scheme using simple colloidal nanoparticles is used to form the nanopore arrays atop nanochannels that unfold the long chain molecules. At the surface of the nanoparticle array, strongly localized electromagnetic fields in engineered plasmonic/polaritonic structures allow for single base resolution using optical techniques.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: January 22, 2019
    Assignee: STC.UNM
    Inventors: Steven R. J. Brueck, Jeremy Scott Edwards, Alexander Neumann, Yuliya Kuznetsova, Edgar A. Mendoza
  • Patent number: 10183032
    Abstract: The present disclosure relates to molecules that function as selective modulators (i.e., inhibitors and agonists) of the Ras-homologous (Rho) family of small GTPases and, in particular, CDC42 GTPase, and their use to treat bacterial infection including systemic infection from sources such as Staphylococcus aureus and Streptococcus pyogenes.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: January 22, 2019
    Assignees: Ball State Innovation Corporation, STC.UNM
    Inventors: Susan A. McDowell, Robert E. Sammelson, Larry A. Sklar, Mark K. Haynes
  • Patent number: 10172967
    Abstract: A subject afflicted with a cancer or precancerous condition is treated by administering an agent that increases expression of somatostatin receptors, and a cytotoxic recognition ligand. In an alternative embodiment, somatostatin analogs, which are radiolabeled are used to treat cancer or precancerous conditions.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: January 8, 2019
    Assignee: STC.UNM
    Inventor: Jeffrey P. Norenberg
  • Patent number: 10174042
    Abstract: The present disclosure provides novel poly(phenylene ethynylene) (PPE) compounds, methods for synthesizing these compounds, and materials and substances incorporating these compounds. The various PPEs show antibacterial, antiviral and antifungal activity.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 8, 2019
    Assignees: STC.UNM, University of Florida Research Foundation, Inc.
    Inventors: David G. Whitten, Kirk S. Schanze, Anand Parthasarathy, Eunkyung Ji, Motokatsu Ogawa, Thomas S. Corbitt, Dimitri Dascier, Ying Wang, Linnea K. Ista, Eric H. Hill
  • Publication number: 20180370854
    Abstract: An electrically and thermally conductive polymer concrete (made of a polymer and aggregate particles without cement) comprising non-functionalized nanoparticles (e.g. non-functionalized multi-walled carbon nanotubes (NF-MWCNTs), non-functionalized carbon nanofibers, non-functionalized nanoalumina) dispersed therein and methods of making same.
    Type: Application
    Filed: July 8, 2016
    Publication date: December 27, 2018
    Applicant: STC.UNM
    Inventors: Mahmoud Reda Taha, Usma Farid Kandil, Ala Eddin Douba, Mehmet Emiroglu
  • Patent number: 10164082
    Abstract: A transistor comprises a substrate comprising a Group III/V compound semiconductor material having a cubic crystalline phase structure positioned on a hexagonal crystalline phase layer having a first region and a second region, the cubic crystalline phase structure being positioned between the first region and the second region of the hexagonal crystalline phase layer. A source region and a drain region are both positioned in the Group III/V compound semiconductor material. A channel region is in the Group III/V compound semiconductor material. A gate is over the channel region. An optional backside contact can also be formed. A source contact and electrode are positioned to provide electrical contact to the source region. A drain contact and electrode are positioned to provide electrical contact to the drain region. Methods of forming transistors are also disclosed.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: December 25, 2018
    Assignee: STC.UNM
    Inventors: Steven R. J. Brueck, Seung-Chang Lee, Christian Wetzel, Mark Durniak
  • Patent number: 10158234
    Abstract: The present invention is an apparatus and method for using aggregated loads from a plurality of distributed energy resources to perform a function at a power distribution feeder. The invention includes a plurality of distributed energy resources, wherein at least one distributed energy resource includes a renewable energy resource, a communication network, a control device, a power distribution feeder coupled to the control device, and an energy storage system coupled to the power distribution feeder. The control device sends a signal to the plurality of distributed energy resources via the communication network. The signal is a request to switch a status of one or more of the distributed energy resources if one or more distributed energy resources is within a predetermined condition. Loads from the one or more of the distributed energy resources that switched status are aggregated to perform a function at the power distribution feeder.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: December 18, 2018
    Assignee: STC.UNM
    Inventors: Andrea A. Mammoli, Yasser Yasaei
  • Publication number: 20180359815
    Abstract: An optoelectronic device having a self-defrosting/de-icing window configured to operate at an electromagnetic radiation frequency having metals that are optically transparent as a result of the wires having an effective plasma frequency that is equal to or lower than the electromagnetic frequency at which the device operates. The effective plasma frequency of the wire is lowered by configuring the path of the wire between the terminal ends to be meandering, serpentine, U-shaped and in other non-linear configurations. The metal wires are resistively heated.
    Type: Application
    Filed: June 15, 2016
    Publication date: December 13, 2018
    Applicant: STC.UNM
    Inventor: Sang Eon Han
  • Patent number: 10153725
    Abstract: A device includes a body and a rechargeable battery positioned within the body. A solar cell is coupled to the body and in communication with the battery. A connector is coupled to the body and configured to engage a corresponding connector of a fiber optic cable.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: December 11, 2018
    Assignee: STC.UNM
    Inventors: Ganesh Balakrishnan, Christopher Hains, Andrew Aragon
  • Patent number: 10141469
    Abstract: A solar cell for collecting solar radiation can include a barrier layer such as a dielectric barrier layer and a heterostructure including a first light absorbing layer and at least a second light absorbing layer. A method for forming the solar cell can include forming a sacrificial layer on a support substrate and forming the barrier layer on the sacrificial layer. The barrier layer is formed to have a strain gradient through its thickness. The heterostructure is attached to the barrier layer and the sacrificial layer is removed, thereby separating the barrier layer and the heterostructure from the support substrate. During the removal of the sacrificial layer, the strain gradient causes the barrier layer and heterostructure, to roll, curl, or spiral, thereby resulting in a radially stacked heterostructure that provides a light concentrating optical cavity having multiple light absorbing layers with different band gaps.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: November 27, 2018
    Assignee: STC.UNM
    Inventors: Francesca Cavallo, Vijay Saradhi Mangu
  • Patent number: 10141418
    Abstract: A method for making a heteroepitaxial layer. The method comprises providing a semiconductor substrate. A seed area delineated with a selective growth mask is formed on the semiconductor substrate. The seed area comprises a first material and has a linear surface dimension of less than 100 nm. A heteroepitaxial layer is grown on the seed area, the heteroepitaxial layer comprising a second material that is different from the first material. Devices made by the method are also disclosed.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: November 27, 2018
    Assignee: STC.UNM
    Inventors: Steven R. J. Brueck, Stephen D. Hersee, Seung-Chang Lee, Daniel Feezell
  • Patent number: 10131996
    Abstract: Novel complexes of various earth-abundant, inexpensive transition or main group metals that facilitate the transformation of carbon dioxide into other more useful organic products. These complexes can bind and alter the CO2 at mild conditions of temperature and pressure, enabling, according to some embodiments, the electrochemical conversion of CO2 into new products.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: November 20, 2018
    Assignee: STC.UNM
    Inventors: Richard Kemp, Diane A. Dickie, Elizabeth S. Donovan, Brian Barry
  • Patent number: 10128398
    Abstract: Systems and methods implementing a resonance circuit, including an avalanche photodiode, in which a resonance frequency of the resonance circuit is matched with the frequency of a dynamic biasing signal of the avalanche photodiode, can be used in a variety of applications. In various embodiments, a method for blocking and/or compensating current injection associated with the parasitic capacitance of APDs operated under dynamic biasing may be substantially realized by the matching of the resonance frequency of a resonance circuit including the avalanche photodiode with the frequency of an applied dynamic biasing signal. Additional systems and methods are described that can be used in a variety of applications.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: November 13, 2018
    Assignee: STC.UNM
    Inventors: Majeed M. Hayat, Payman Zarkesh-Ha
  • Publication number: 20180311302
    Abstract: The present invention provides a novel class of medicament based on CXCR antagonistic peptides. Among other things, the present invention provides peptides, compositions and methods for treating diseases, disorders and conditions in which a CXCR mediated pathway is implicated. Compositions and methods for effective treatment of inflammation, stroke, traumatic brain injury, pancreatic cancer, and others are provided.
    Type: Application
    Filed: April 25, 2018
    Publication date: November 1, 2018
    Applicant: STC.UNM
    Inventor: Jeff Wade Hill
  • Patent number: D838115
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: January 15, 2019
    Assignee: STC. UNM
    Inventor: Geoffrey Adams