Abstract: A circuit for biasing non-volatile memory cells includes a dummy decoding path between a global bias line and a biasing node, a reference current generator coupled to the dummy decoding path and configured to supply a reference current, a biasing stage configured to set a cell bias voltage on the biasing node, and a compensation stage configured to compensate a current absorption of the biasing stage at the biasing node so that the reference current will flow through the dummy decoding path.
Type:
Grant
Filed:
April 28, 2016
Date of Patent:
November 28, 2017
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Fabio Enrico Carlo Disegni, Giuseppe Castagna, Maurizio Francesco Perroni
Abstract: An image processing system includes a first processor that acquires frames of image data. For each frame of data, the first processor generates a Gaussian pyramid for the frame of data, extract histogram of oriented gradient (HOG) descriptors for each level of the Gaussian pyramid, compresses the HOG descriptors, and sends the compressed HOG descriptors. A second processor is coupled to the first processor and is configured to receive the compressed HOG descriptors, aggregate the compressed HOG descriptors into windows, compare data of each window to at least one stored model, and generate output based upon the comparison.
Type:
Grant
Filed:
January 9, 2015
Date of Patent:
November 28, 2017
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Alberto Margari, Danilo Pietro Pau, Raimondo Schettini
Abstract: A microelectromechanical device includes: a body; a movable mass, elastically coupled to the body and oscillatable with respect to the body according to a degree of freedom; a frequency detector, configured to detect a current oscillation frequency of the movable mass; and a forcing stage, capacitively coupled to the movable mass and configured to provide energy to the movable mass through forcing signals having a forcing frequency equal to the current oscillation frequency detected by the frequency detector, at least in a first transient operating condition.
Type:
Grant
Filed:
December 30, 2015
Date of Patent:
November 28, 2017
Assignee:
STMicroelectronics S.r.l.
Inventors:
Marco Garbarino, Andrea Donadel, Davide Magnoni, Carlo Valzasina
Abstract: A distributed active transformer includes an input transformer set and an output transformer set. Active stages are coupled between a transformer in the input transformer set and a transformer in the output transformer set. The input and output transformer sets are each configured as a slab transformer. The input slab transformer includes a single primary slab and many secondary slabs. The output slab transformer includes many primary slabs and a single secondary slab.
Abstract: A process for manufacturing a packaged microelectromechanical device includes: forming a lid having a face and a cavity open on the face; coating the face of the lid and walls of the cavity with a metal layer containing copper; and coating the metal layer with a protective layer.
Abstract: A method includes: writing first data in a first partition of a first memory module and second data in a first partition of a second memory module, and selectively operating the first and second memory modules in a first operating mode and a second operating mode. The first operating mode includes writing parity bits for the first data in a second partition of the second memory module and parity bits for the second data in a second partition of the first memory module. The second operating mode includes writing further data instead of parity bits in the second partition of one or both the first memory module and the second memory module.
Type:
Grant
Filed:
March 24, 2016
Date of Patent:
November 21, 2017
Assignees:
STMicroelectronics S.r.l., STMicroelectronics Design and Application S.R.O.
Abstract: A method for manufacturing a biosensor includes forming an electrode layer on a flexible foil. An adhesive layer is positioned on the foil layer, and a first photo-definable hydrogel membrane is positioned over the electrode layer and the adhesive layer. A second photo-definable hydrogel membrane with an immobilized bio-recognition element is positioned over the first hydrogel membrane in contact with the electrode layer through an opening in the first hydrogel membrane.
Type:
Grant
Filed:
November 24, 2015
Date of Patent:
November 21, 2017
Assignee:
STMicroelectronics S.r.l.
Inventors:
Andrea Di Matteo, Vincenza Di Palma, Maria Fortuna Bevilacqua, Angela Cimmino
Abstract: A method for manufacturing a protective layer for protecting an intermediate structural layer against etching with hydrofluoric acid, the intermediate structural layer being made of a material that can be etched or damaged by hydrofluoric acid, the method comprising the steps of: forming a first layer of aluminum oxide, by atomic layer deposition, on the intermediate structural layer; performing a thermal crystallization process on the first layer of aluminum oxide to form a first intermediate protective layer; forming a second layer of aluminum oxide, by atomic layer deposition, above the first intermediate protective layer; and performing a thermal crystallization process on the second layer of aluminum oxide to form a second intermediate protective layer and thereby completing the formation of the protective layer. The method for forming the protective layer can be used, for example, during the manufacturing steps of an inertial sensor such as a gyroscope or an accelerometer.
Type:
Grant
Filed:
December 29, 2015
Date of Patent:
November 21, 2017
Assignee:
STMicroelectronics S.r.l.
Inventors:
Stefano Losa, Raffaella Pezzuto, Roberto Campedelli, Matteo Perletti, Luigi Esposito, Mikel Azpeitia Urquia
Abstract: A process for manufacturing surface-mount semiconductor devices, in particular of the Quad-Flat No-Leads Multi-Row type, comprising providing a metal leadframe, in particular a copper leadframe, which includes a plurality of pads, each of which is designed to receive the body of the device, the pads being separated from adjacent pads by one or more rows of wire-bonding contacting areas, outermost rows from among the one or more rows of wire-bonding contacting areas identifying, together with outermost rows corresponding to the adjacent pads, separation regions.
Abstract: An electrical check executed on wafer tests for the correct positioning or alignment of the probes of a probe card on the pads or bumps of the electronic devices integrated on the wafer. A signal is applied to cause a current to circulate in at least part of a seal ring of at least one of the electronic devices. In a case where the current flows between and through multiple electronic devices, the seal rings of those electronic devices are suitably interconnected to each other by electronic structures that extend through the scribe line between electronic devices.
Abstract: An electronic device having a functional portion and a test portion. The test portion includes a boundary scan register formed by a plurality of test cells arranged in the body according to a register sequence, where first test cells are configured to form a serial-to-parallel converter and second test cells are configured to form a parallel-to-serial converter. The test cells are each coupled to a respective data access pin of the device and to a respective input/output point of the functional part and have a first test input and a test output. The boundary scan register defines two test half-paths formed, respectively, by the first test cells and by the second test cells. The first test cells are directly coupled according to a first sub-sequence, and the second test cells are directly coupled according to a second sub-sequence.
Abstract: A receiver for digital signals includes a radiofrequency stage. A feedback loop controls an amplitude of a modulated radiofrequency signal passing through the radiofrequency stage as a function of a comparison of a baseband signal with a reference value. A baseband stage includes an RC network cascaded to the radiofrequency stage and coupled to a baseband detector that generates the baseband signal. The feedback loop includes a circuit for detecting a range of variation of the comparison. The amplitude of the modulated radiofrequency signal is controlled as a function of an end value (e.g., maximum or minimum) of the detected range of variation. A switching circuit operates to selectively short circuit a resistive component of the RC network during receiver start-up.
Type:
Grant
Filed:
September 29, 2016
Date of Patent:
November 14, 2017
Assignee:
STMicroelectronics S.r.l.
Inventors:
Ranieri Guerra, Roberto Larosa, Giuseppe Palmisano
Abstract: A method is provided for performing a management of a multi-subscription SIM module. The multi-subscription SIM module includes at least one memory adapted to store at least a first and a second profile associated with a respective first and a second mobile network operator. The memory includes a volatile portion. The operation of storing includes installing or updating profiles by downloading one or more downloaded profiles from a remote host. The management includes selecting one or more enabled profiles including an application to be executed and allocating a partition of the volatile portion of the memory to the one or more enabled profile.
Abstract: A micromechanical structure of a MEMS device, integrated in a die of semiconductor material provided with a substrate and having at least a first axis of symmetry lying in a horizontal plane, has a stator structure, which is fixed with respect to the substrate, and a rotor structure, having a suspended mass, mobile with respect to the substrate and to the stator structure as a result of an external action, the stator structure having fixed sensing electrodes capacitively coupled to the rotor structure; a compensation structure is integrated in the die for compensation of thermo-mechanical strains. The compensation structure has stator compensation electrodes, which are fixed with respect to the substrate, are capacitively coupled to the rotor structure, and are arranged symmetrically to the fixed sensing electrodes with respect to the first axis of symmetry.
Abstract: A sensor of volatile substances includes: a first electrode structure and a second electrode structure capacitively coupled, comb-fingered, and arranged coplanar in a plane; and a sensitive layer, of a sensitive material that is permeable to a volatile substance and has electrical permittivity depending upon a concentration of the volatile substance absorbed by the sensitive material. The sensitive layer extends from opposite sides of the plane.
Abstract: An active high gain filter includes high value resistances in feedback implemented using a negative resistance circuit configuration. The high value resistance is implemented using two or smaller resistances connected in the negative resistance circuit configuration. This implementation permits integration of the filter circuit using less occupied area while still providing an accurate transfer function response.
Abstract: A switching converter converts an input signal to a regulated output signal using a switch and a transformer with a primary winding and a secondary winding. A wake up management circuit receives a transformer demagnetization signal and forces by wake up pulses the switch on when the switching converter operates in a burst mode. Sampled values of the transformer demagnetization signal are received. A setting circuit sets a first peak value of the current of the primary winding. A comparison circuit compare the sampled values with a voltage threshold and the preceding sampled value. In response thereto, the first peak value of the primary winding current is either maintained or a new peak value is set.
Type:
Grant
Filed:
October 20, 2016
Date of Patent:
November 7, 2017
Assignee:
STMicroelectronics S.r.l.
Inventors:
Salvatore Tumminaro, Andrea Rapisarda, Alfio Pasqua
Abstract: An acoustic device includes a micro-machined acoustic transducer element, an acoustically attenuating region, and an acoustic matching region arranged between the acoustic transducer element and the acoustically attenuating region. The acoustic transducer element is formed in a first substrate housing a cavity delimiting a membrane. A second substrate of semiconductor material integrating an electronic circuit is arranged between the acoustic transducer element and the acoustically attenuating region. The acoustic matching region has a first interface with the second substrate and a second interface with the acoustically attenuating region. The acoustic matching region has an impedance matched to the impedance of the second substrate in proximity of the first interface, and an impedance matched to the acoustically attenuating region in proximity of the second interface.
Type:
Application
Filed:
March 20, 2017
Publication date:
November 2, 2017
Applicant:
STMicroelectronics S.r.l.
Inventors:
Marco Morelli, Fabio Quaglia, Fabrizio Fausto Renzo Toia, Marco Sambi, Giuseppe Barillaro
Abstract: A memory device includes a memory array with memory cells arranged in rows and columns and with word lines and bit lines. A dummy structure includes a dummy row of dummy cells and a dummy word line. A first pre-charging stage biases a word line of the memory array. An output stage includes a plurality of sense amplifiers. Each sense amplifier generates a corresponding output signal representing a datum stored in a corresponding memory cell pre-charged by the first pre-charging stage. A second pre-charging stage biases the dummy word line simultaneously with the word line biased by the first pre-charging stage. The output stage includes an enable stage, which detects a state of complete pre-charging of an intermediate dummy cell.
Abstract: A interface circuit for an acoustic transducer provided with a first detection structure and a second detection structure has: a first input and a second input; a first processing path and a second processing path coupled, respectively, to the first input and second input and supply a first processed signal and a second processed signal; and a recombination stage, which supplies a mixed signal by combining the first processed signal and the second processed signal with a respective weight that is a function of a first level value of the first processed signal. The first and second inputs receive a respective detection signal associated, respectively, to the first detection structure and to the second detection structure of the acoustic transducer; and an output stage the first processed signal, the second processed signal or the mixed signal, on the basis of a second level value of the first processed signal.