Abstract: A significant reduction of the amplitude of the transient response is obtained by keeping a low dropout regulator circuit in a closed loop condition. This is achieved by manipulation of the reference voltage level when an open loop condition arises due to a falling input voltage. In this case, the reference voltage level is tracked with the input voltage level, keeping the output voltage regulated. As a consequence, the power pass element of the regulator is not forced into the linear region (in the case of a MOSFET) or deep saturation (in the case of a bipolar transistor).
Type:
Application
Filed:
February 3, 2016
Publication date:
August 3, 2017
Applicants:
STMicroelectronics Design and Application S.R.O., STMicroelectronics S.r.l.
Abstract: An active high gain filter includes high value resistances in feedback implemented using a negative resistance circuit configuration. The high value resistance is implemented using two or smaller resistances connected in the negative resistance circuit configuration. This implementation permits integration of the filter circuit using less occupied area while still providing an accurate transfer function response.
Abstract: A high-voltage electronic switch includes first and second transistors defining a current flow path between an input and output of the switch. The transistors have a common point of the current flow path and a common control terminal. A control circuit includes a voltage line receiving a limit operating voltage and first and second branches coupled between the voltage line and the common point and common control terminal, respectively. Further transistors are activated, upon turning-off of the first and second transistors, for coupling the branches to the voltage line. The branches include a parallel connected resistor, diode, and string of diodes with opposite polarities. The diode of the first branch plus string of diodes of the second branch and diode of the second branch plus string of diodes of the first branch provide coupling paths between the voltage line and, respectively, the common point and common control terminal.
Abstract: A controller for a multiphase converter comprises a first stage controller for producing a first gate drive signal to turn on a first power transistor of a first boost converter; a delay element configured to produce a delayed signal by delaying the first gate drive signal by half a cycle length; a time difference detection element configured to: output a turn on command based on a zero crossing detection (ZCD) signal indicating that one or more zero current conditions of a second boost converter of the multiphase converter are met and the delayed signal; and a second stage controller configured to assert a second gate drive signal to turn on a second power transistor of the second boost converter based on the turn on command.
Abstract: A microelectromechanical device includes: a body accommodating a microelectromechanical structure; and a cap bonded to the body and electrically coupled to the microelectromechanical structure through conductive bonding regions. The cap including a selection module, which has first selection terminals coupled to the microelectromechanical structure, second selection terminals, and at least one control terminal, and which can be controlled through the control terminal to couple the second selection terminals to respective first selection terminals according, selectively, to one of a plurality of coupling configurations corresponding to respective operating conditions.
Type:
Grant
Filed:
December 16, 2015
Date of Patent:
August 1, 2017
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Giorgio Allegato, Barbara Simoni, Carlo Valzasina, Lorenzo Corso
Abstract: A pressure sensor device is to be positioned within a material where a mechanical parameter is measured. The pressure sensor device may include an IC having a ring oscillator with an inverter stage having first doped and second doped piezoresistor couples. Each piezoresistor couple may include two piezoresistors arranged orthogonal to one another with a same resistance value. Each piezoresistor couple may have first and second resistance values responsive to pressure. The IC may include an output interface coupled to the ring oscillator and configured to generate a pressure output signal based upon the first and second resistance values and indicative of pressure normal to the IC.
Type:
Grant
Filed:
June 30, 2015
Date of Patent:
August 1, 2017
Assignee:
STMicroelectronics S.R.L.
Inventors:
Alessandro Motta, Alberto Pagani, Giovanni Sicurella
Abstract: A digital filter with a pipeline structure includes processing structures timed by respective clock signals. Each processing structure in turn is formed by a number of processing modules for processing input samples. A phase generator aligns the processing modules with the input samples so that each input sample is processed by a respective one of the processing modules. An up-sampling buffer and a down-sampling buffer are used when the processing structures operate at different clock frequencies (thus implementing different clock domains) so as to convert signal samples between the clock domains for processing in the processing structures.
Abstract: A vertical conduction integrated electronic device including: a semiconductor body; a trench that extends through part of the semiconductor body and delimits a portion of the semiconductor body, which forms a first conduction region having a first type of conductivity and a body region having a second type of conductivity, which overlies the first conduction region; a gate region of conductive material, which extends within the trench; an insulation region of dielectric material, which extends within the trench and is arranged between the gate region and the body region; and a second conduction region, which overlies the body region. The second conduction region is formed by a conductor.
Type:
Grant
Filed:
March 25, 2016
Date of Patent:
July 18, 2017
Assignee:
STMicroelectronics S.r.l.
Inventors:
Davide Giuseppe Patti, Antonio Giuseppe Grimaldi
Abstract: A method determines a resonance frequency of a resonant device. The method includes stimulating the resonant device with a periodic input signal having a frequency in a frequency interval; determining a frequency value for said periodic input signal in said frequency interval for which a phase-difference between said periodic input signal and a corresponding periodic output signal of the resonant device is minimum; generating a flag indicating that a resonance frequency has been determined; and generating signals representing said resonance frequency as a value of the frequency of said periodic input signal.
Type:
Grant
Filed:
December 20, 2012
Date of Patent:
July 18, 2017
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Nicolo Nizza, Paolo Pascale, Andrea Diruzza, Michele Berto Boscolo
Abstract: A temperature sensor, including a conduction path, between a line at a supply voltage and a common ground terminal of the temperature sensor, including a capacitor, a resistor and a reverse biased diode a junction temperature of which is to be sensed; a digital circuit coupled with the capacitor, the resistor and the diode, configured to compare a charge voltage of the capacitor with an upper threshold voltage and with a lower threshold voltage, and to generate in operation an output sense signal that switches to a first logic level when the charge voltage attains the lower threshold voltage and to a second logic level when the charge voltage attains the upper threshold voltage, the digital circuit being configured to connect the resistor electrically in parallel with the capacitor to discharge the capacitor when the output sense signal is at the second logic level, and to connect the capacitor so as to be charged by a reverse saturation current flowing throughout the reverse biased diode when the output sens
Abstract: A method manages hysteretic DC-DC buck converters each including a hysteretic comparator operating according to a respective hysteresis window. The method includes, in a given converter, verifying if a respective feedback voltage reaches a lower threshold in order to enter a switch-on period of the converter, The method comprises: while the verifying indicates that the lower threshold is not reached, detecting if another converter has entered a respective switch on period and, in the affirmative, entering a hysteresis voltage adjustment procedure, include increasing by a given amount the amplitude of the hysteresis window of the given converter by reducing the lower threshold of the hysteresis window.
Abstract: In order to manufacture a packaged device, a die having a sensitive region is bonded to a support, and a packaging mass of moldable material is molded on the support so as to surround the die. During molding of the packaging mass, a chamber is formed, which faces the sensitive region and is connected to the outside environment. To this end, a sacrificial mass of material that may evaporate/sublimate is dispensed on the sensitive region; the packaging mass is molded on the sacrificial mass; a through hole is formed in the packaging mass to extend as far as the sacrificial mass; the sacrificial mass is evaporated/sublimated through the hole.
Abstract: A switching device, such as a barrier junction Schottky diode, has a body of silicon carbide of a first conductivity type housing switching regions of a second conductivity type. The switching regions extend from a top surface of the body and delimit body surface portions between them. A contact metal layer having homogeneous chemical-physical characteristics extends on and in direct contact with the top surface of the body and forms Schottky contact metal portions with the surface portions of the body and ohmic contact metal portions with the switching regions. The contact metal layer is formed by depositing a nickel or cobalt layer on the body and carrying out a thermal treatment so that the metal reacts with the semiconductor material of the body and forms a silicide.
Type:
Grant
Filed:
June 10, 2015
Date of Patent:
July 18, 2017
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Mario Giuseppe Saggio, Simone Rascuna, Fabrizio Roccaforte
Abstract: An integrated data concentrator, so-called “sensor hub”, for a multi-sensor MEMS system, implements: a first interface module, for interfacing, in a normal operating mode, with a microprocessor through a first communication bus; and a second interface module, for interfacing, in the normal operating mode, with a plurality of sensors through a second communication bus; the sensor hub further implements a pass-through operating mode, distinct from the normal operating mode, in which it sets the microprocessor in direct communication with the sensors, through the first communication bus and the second communication bus. In particular, the sensor hub implements the direct pass-through operating mode in a totally digital manner.
Type:
Grant
Filed:
June 24, 2014
Date of Patent:
July 18, 2017
Assignee:
STMicroelectronics S.r.l.
Inventors:
Marco Leo, Alessandra Maria Rizzo Piazza Roncoroni, Marco Castellano
Abstract: A nozzle plate for a fluid-ejection device, comprising: a first substrate made of semiconductor material, having a first side and a second side; a structural layer extending on the first side of the first substrate, the structural layer having a first side and a second side, the second side of the structural layer facing the first side of the first substrate; at least one first through hole, having an inner surface, extending through the structural layer, the first through hole having an inlet section corresponding to the first side of the structural layer and an outlet section corresponding to the second side of the structural layer; a narrowing element adjacent to the surface of the first through hole, and including a tapered portion such that the inlet section of the first through hole has an area larger than a respective area of the outlet section of the first through hole.
Type:
Grant
Filed:
October 24, 2014
Date of Patent:
July 18, 2017
Assignees:
STMICROELECTRONICS S.R.L., STMICROELECTRONICS, INC.
Abstract: A non-volatile memory of a complementary type includes sectors of memory cells, with each cell formed by a direct memory cell and a complementary memory cell. Each sector is in a non-written condition when the corresponding memory cells are in equal states and is in a written condition wherein each location thereof stores a first logic value or a second logic value when the memory cells of the location are in a first combination of different states or in a second combination of different states, respectively. A sector is selected and a determination is made as to a number of memory cells in the programmed state and a number of memory cells in the erased state. From this information, the condition of the selected sector is identified from a comparison between the number of memory cells in the programmed state and the number of memory cells in the erased state.
Type:
Application
Filed:
March 28, 2017
Publication date:
July 13, 2017
Applicant:
STMicroelectronics S.r.l.
Inventors:
Marcella Carissimi, Marco Pasotti, Fabio De Santis
Abstract: A process for manufacturing a surface-mount electronic device includes forming a plurality of preliminary contact regions of a sinterable material on a supporting structure, the supporting structure being of a soluble type. A chip including a semiconductor body is mechanically coupled to the supporting structure. The sinterable material is sintered such that each preliminary contact region forms a corresponding sintered preliminary contact, and the chip and the plurality of preliminary contact regions are coated with a dielectric coating region, and the supporting structure is removed using a jet of liquid.
Abstract: The present disclosure is directed to a switching power converter having a regulated output voltage or output current. The power converter uses a control unit having a signal conditioning circuit to produce a control voltage signal, which is used to drive a power stage of the converter. The signal conditioning circuit includes a comparator that compares a measured electrical quantity to a reference value representative of a desired regulated output quantity, and produces a digital detection signal based on the comparison. A control actuator uses the digital detection signal to produce a correction signal, which is received by an averaging circuit. The averaging circuit then produces the control voltage signal based on an average of the correction signal.
Abstract: A sensing circuit includes: a follower transistor, having a control terminal; a follower terminal for connection to a load; a bias-current generator, coupled to the follower terminal; and a feedback stage, configured to control the bias-current generator as a function of an input signal on the control terminal of the follower transistor.
Abstract: Embodiments include a method and an apparatus for the localization of at least one source of an acoustic signal including: temporally sampling the acoustic signal with a plurality of microphones to obtain a (D+1)-dimensional space-time matrix representation of the acoustic signal, wherein D is the number of spatial dimensions, applying a (D+1)-dimensional Fourier transform to the matrix representation, determining a first peak in a spectrum obtained based on the application of the Fourier transform, and calculating the direction of arrival of the acoustic signal at at least one of the plurality of microphones based on the determined first peak.