Abstract: A class AB operational amplifier includes an input stage, an output stage and a level shifter stage to control the quiescent current of the output stage and to transfer the signal from the input stage to the output stage, and a control circuit of the level shifter stage. The control circuit includes a transistor differential pair having a differential input terminals and the differential voltage at the differential terminals of the differential pair controls the level shifter stage.
Abstract: An embodiment of a method is proposed for producing cantilever probes for use in a test apparatus of integrated electronic circuits; the probes are configured to contact during the test corresponding terminals of the electronic circuits to be tested. An embodiment comprises forming probe bodies of electrically conductive materials. In an embodiment, the method further includes forming on a lower portion of each probe body that, in use, is directed to the respective terminal to be contacted, an electrically conductive contact region having a first hardness value equal to or greater than 300 HV; each contact region and the respective probe body form the corresponding probe.
Abstract: A wireless communication network includes an access point and a plurality of stations. The access point sends towards the stations periodic information arranged in time frames or beacon intervals. The stations in the network are configured to in a first mode through the access point, and in a second mode directly with each other. The time frames are partitioned into a first time interval wherein the stations communicate in the first mode over a first channel; a second time interval wherein the stations communicate in the second mode over a second channel, and a third time interval wherein the stations communicate in either of the first or the second mode.
Type:
Grant
Filed:
July 19, 2006
Date of Patent:
January 5, 2016
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Gabriella Convertino, Carlo Parata, Vincenzo Scarpa
Abstract: A calibration circuit for a DCO includes a signal-conditioning module configured for (i) receiving at input an oscillating signal generated by the DCO and a reference signal, both designed to oscillate between a high logic value (“1”) and a low logic value (“0”), and (ii) detecting a respective first and second stable logic value of the reference signal and of the oscillating signal; and a period-to-voltage converter module coupled to the signal-conditioning module and configured for (iii) generating a difference signal identifying a difference between the period of the reference signal and the period of the oscillating signal, and (iv) controlling, on the basis of the difference signal, the DCO so as to conform the duration of the period of the oscillating signal to the duration of the period of the reference signal. Likewise described is a calibration method implemented by the calibration circuit.
Type:
Grant
Filed:
April 24, 2014
Date of Patent:
January 5, 2016
Assignee:
STMicroelectronics S.r.l.
Inventors:
Calogero Marco Ippolito, Mario Chiricosta
Abstract: A relatively high-speed, high-efficiency CMOS two branch driver core that may operate under relatively low supply voltage may include thin oxide CMOS transistors configured to generate rail-to-rail output swings larger than twice a supply voltage and without exceeding safe operating area limits. Each of the two branches may include two stacked CMOS inverter pairs configured to drive a respective load capacitance coupled between respective CMOS inverter outputs, in phase opposition to the other branch. A pre-driver circuit input with a differential modulating signal may output two synchronous differential voltage drive signals of a swing of half of the supply voltage and DC-shifted by half of the supply voltage with respect to each other and that may be applied to the respective CMOS inverter inputs of the two branches.
Abstract: An application program providing a task in an electronic device is protected. Information used for executing the task in the electronic device is stored in a smart object to be coupled thereto. The information is requested from the smart object at run time execution of the application program by the electronic device, and is returned to the application program to define at run time a correct semantic of the task.
Abstract: Embodiments of a method and an apparatus for detecting multiple complex-valued symbols belonging to discrete constellations. The method and apparatus is a detector that finds a closest vector, or a close approximation of it, to a received vector. The disclosure also gets (optimally, in case of two transmit sources) or closely approximates (for more than two transmit sources) the most likely sequences required for an optimal bit or symbol a-posteriori probability computation. Also part of the present disclosure is represented by Also embodiments of a method and an apparatus to determine a near-optimal ordering algorithms for the aforementioned purpose. The method and apparatus achieves optimal performance for two transmit antennas and achieves near-optimal performance for a higher number of antennas, with a lower complexity as compared to a maximum-likelihood detection method and apparatus. The method and apparatus are suitable for highly parallel hardware architectures.
Abstract: A power amplifier includes a clamping circuit configured to provide a clamped voltage from a power supply; an amplifier pair having first inputs coupled to the clamping circuit, second inputs and an output for providing an amplified signal; and a biasing circuit coupled between the clamping circuit and the second inputs. The biasing circuit is configured to adjust input bias voltages of the amplifier pair such that the bias voltage of the output of the amplifier pair varies proportionally to a change of the power supply.
Abstract: A semiconductor gas sensor device includes a first cavity that is enclosed by opposing first and second semiconductor substrate slices. At least one conducting filament is provided to extend over the first cavity, and a passageway is provided to permit gas to enter the first cavity. The sensor device may further including a second cavity that is hermetically enclosed by the opposing first and second semiconductor substrate slices. At least one another conducting filament is provided to extend over the second cavity.
Type:
Application
Filed:
May 29, 2015
Publication date:
December 31, 2015
Applicant:
STMicroelectronics S.r.l.
Inventors:
Pasquale Biancolillo, Angelo Recchia, Pasquale Franco, Antonio Cicero, Giuseppe Bruno
Abstract: A battery charger includes an input supply terminal configured to receive a supply signal and a battery terminal configured to be connected to a battery. A supply switching circuit is arranged between the battery terminal and the input supply terminal. A control device generates a control signal to control operation of the supply switching circuit. A fuel gauge device provide a digital estimation of a voltage signal across the battery. A correction device modifies the control signal in response to the digital estimation of the voltage signal across the battery if that digital estimation is outside of a value range between two thresholds.
Type:
Application
Filed:
May 29, 2015
Publication date:
December 31, 2015
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Agatino Antonino Alessandro, Carmelo Alberto Santagati, Liliana Arcidiacono, Francesco Pirozzi
Abstract: An electric transformer device (balun) is formed on a support plate having a first base face and an opposite second base face. The balun includes a first port (40) connectable to an electrical line for a differential signal and a second port connectable to an electrical line for a single-ended signal. A first printed conductive track is associated to the first base face of the support plate for connecting the first port to the second port. A printed conductive path is associated to the second base face of the support plate for connecting the first port to the second port. The printed conductive path is formed of a symmetric second and third printed conductive tracks.
Abstract: A communication cell for an integrated circuit includes a physical interface configured to supply an input signal (for example, a capacitive signal or an ohmic signal). A receiver circuit operates to receive the capacitive signal and generate a first intermediate signal. A buffer circuit operates to receive the ohmic signal and generate a second intermediate signal. An output stage including a selector device (for example, a multiplexer) configured to receive the first and second intermediate signals and selectively pass only one of those signals to the integrated circuit based on operating condition. The input signal may further be an inductive signal, with the output stage further functioning to selectively pass that signal based on operating condition.
Abstract: An access process for an electronic device includes storing encrypted partitions in a storage area of the electronic device, with each encrypted partition corresponding to a registered user. A secure element is received from a registered user, with the secure element storing a user key for decrypting an encrypted partition corresponding to the register user providing the user key. A temporary secure channel is established between the secure element and the electronic device, and a registered user associated to one of the encrypted partitions is authenticated in the electronic device. An identification of the registered user authenticated in the electronic device is transmitted to the secure device, and the user key of the authenticated registered user is transmitted from the secure element to the electronic device over the temporary secure channel.
Abstract: An embodiment of a method for producing traceable integrated circuits includes forming on a wafer of semiconductor material functional regions for implementing specific functionalities of corresponding integrated circuits, forming at least one seal ring around each functional region of the corresponding integrated circuit, and forming on each integrated circuit at least one marker indicative of information of the integrated circuit. Forming on each integrated circuit at least one marker may include forming the at least one marker on at least a portion of the respective seal ring that is visible.
Abstract: A low drop out voltage regulator includes an operational transconductance amplifier configured to be supplied with a supply voltage of the regulator, receive as inputs a reference voltage and a feedback voltage, and generate an intermediate current based upon a difference between the reference voltage and the feedback voltage. A current-to-voltage amplification stage is configured to be supplied with a boosted voltage greater than the supply voltage from a high voltage line, receive as input the intermediate current, and generate a driving voltage that is changed based upon the intermediate current. A pass transistor is controlled with the driving voltage to keep constant on a second conduction terminal thereof a regulated output voltage. A feedback network generates the feedback voltage based on the regulated output voltage.
Abstract: A printed circuit board including a first outer layer, a second outer layer and an integrated circuit mounted on the second outer layer. The integrated circuit has a single exposed pad electrically connected to a ground reference, a first supply pin electrically connected to a first power supply and a second supply pin electrically connected to a second power supply, wherein the first power supply is configured to generate a first supply current with frequency components higher than the frequency components of a second supply current generated by the second power supply.
Type:
Grant
Filed:
October 10, 2013
Date of Patent:
December 29, 2015
Assignees:
STMICROELECTRONICS S.R.L., FREESCALE SEMICONDUCTOR, INC.
Inventors:
Mario Rotigni, Richard Moseley, Piyush Bhatt, Gregory Edgington
Abstract: A microelectromechanical sensing structure for a capacitive acoustic transducer, including: a semiconductor substrate; a rigid electrode; and a membrane set between the substrate and the rigid electrode, the membrane having a first surface and a second surface, which are in fluid communication, respectively, with a first chamber and a second chamber, respectively, the first chamber being delimited at least in part by a first wall portion and a second wall portion formed at least in part by the substrate, the second chamber being delimited at least in part by the rigid electrode, the membrane being moreover designed to undergo deformation following upon incidence of pressure waves and facing the rigid electrode so as to form a sensing capacitor having a capacitance that varies as a function of the deformation of the membrane. The structure moreover includes a beam, which is connected to the first and second wall portions and is designed to limit the oscillations of the membrane.
Abstract: An asynchronous level shifter electronic circuit including: a transmitter, which can be coupled to a first voltage and generates a communication signal; a receiver, which can be coupled to a second voltage; and a capacitive coupling stage, which receives the communication signal and supplies a corresponding filtered signal to the receiver. The receiver includes: a threshold device, which has an input terminal and an output terminal and switches an electrical quantity on the output terminal between a first value and a second value, as a function of corresponding transitions through a threshold of a first intermediate signal present on the input terminal, to generate a second intermediate signal; and a biasing circuit, which generates the first intermediate signal to have a d.c. component, which is a function of the second intermediate signal, and superposed on which is a variable component, which is a function of the filtered signal.
Abstract: A microelectromechanical gyroscope that includes a first mass oscillatable according to a first axis; an inertial sensor, including a second mass, drawn along by the first mass and constrained so as to oscillate according to a second axis, in response to a rotation of the gyroscope; a driving device coupled to the first mass so as to form a feedback control loop and configured to maintain the first mass in oscillation at a resonance frequency; and an open-loop reading device coupled to the inertial sensor for detecting displacements of the second mass according to the second axis. The driving device includes a read signal generator for supplying to the inertial sensor at least one read signal having the form of a square-wave signal of amplitude that sinusoidally varies with the resonance frequency.
Type:
Grant
Filed:
July 15, 2014
Date of Patent:
December 22, 2015
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Carlo Caminada, Luciano Prandi, Ernesto Lasalandra
Abstract: An electronic device includes a circuit integrated on a die having front and back surfaces with die terminals on the front surface. The die is embedded in a package including substrate of thermally conductive material with front and back surfaces and a through-hole. The die is sunk in the through-hole. A first insulating material layer covers the die front surface and the package front surface with first windows for accessing die terminals. Package terminals and package track are arranged on the first insulating layer. A second insulating material layer covers the first insulating layer and the package tracks with second windows for accessing the package terminals.
Type:
Application
Filed:
June 8, 2015
Publication date:
December 17, 2015
Applicant:
STMICROELECTRONICS S.R.L.
Inventors:
Fulvio Vittorio Fontana, Giovanni Graziosi