Abstract: A method and apparatus are disclosed for reducing the coupling that otherwise can arise between word lines and control gate lines in a flash memory system due to parasitic capacitance and parasitic resistance. The flash memory system comprises an array of flash memory cells organized into rows and columns, where each row is coupled to a word line and a control gate line.
Type:
Grant
Filed:
August 30, 2018
Date of Patent:
March 10, 2020
Assignee:
Silicon Storage Technology, Inc.
Inventors:
Xiaozhou Qian, Kai Man Yue, Guang Yan Luo
Abstract: A memory device that includes a plurality of memory cells arranged in rows and columns, a plurality of bit lines each connected to one of the columns of memory cells, and a plurality of differential sense amplifiers each having first and second inputs and an output. For each of the differential sense amplifiers, the differential sense amplifier is configured to generate an output signal on the output having an amplitude that is based upon a difference in signal amplitudes on the first and second inputs, the first input is connected to one of the bit lines, and the second input is connected to another one of the bit lines. Alternately, one or more sense amplifiers are configured to detect signal amplitudes on the bit lines, and the device includes calculation circuitry configured to produce output signals each based upon a difference in signal amplitudes on two of the bit lines.
Abstract: A memory array with memory cells arranged in rows and columns. Each memory cell includes source and drain regions with a channel region there between, a floating gate disposed over a first channel region portion, and a second gate disposed over a second channel region portion. A plurality of bit lines each extends along one of the columns and is electrically connected to the drain regions of a first group of one or more of the memory cells in the column and is electrically isolated from the drain regions of a second group of one or more of the memory cells in the column. A plurality of source lines each is electrically connected to the source regions of the memory cells in one of the columns or rows. A plurality of gate lines each is electrically connected to the second gates of memory cells in one of the columns or rows.
Abstract: A memory device includes rows and columns of memory cells, word lines each connected to a memory cell row, bit lines each connected to a memory cell column, a word line driver connected to the word lines, a bit line driver connected to the bit lines, word line switches each disposed on one of the word lines for selectively connecting one memory cell row to the word line driver, and bit line switches each disposed on one of the bit lines for selectively connecting one memory cell column to the bit line driver. A controller controls the word line switches to connect only some of the rows of memory cells to the word line driver at a first point in time, and controls the bit line switches to connect only some of the columns of memory cells to the bit line driver at a second point in time.
Type:
Grant
Filed:
June 21, 2018
Date of Patent:
March 3, 2020
Assignee:
Silicon Storage Technology, Inc.
Inventors:
Vipin Tiwari, Hieu Van Tran, Nhan Do, Mark Reiten
Abstract: A method of reading a memory device having a plurality of memory cells by, and a device configured for, reading a first memory cell of the plurality of memory cells to generate a first read current, reading a second memory cell of the plurality of memory cells to generate a second read current, applying a first offset value to the second read current, and then combining the first and second read currents to form a third read current, and then determining a program state using the third read current. Alternately, a first voltage is generated from the first read current, a second voltage is generated from the second read current, whereby the offset value is applied to the second voltage, wherein the first and second voltages are combined to form a third voltage, and then the program state is determined using the third voltage.
Abstract: A semiconductor substrate having an upper surface with a plurality of upwardly extending fins. A memory cell formed on a first of the fins and including spaced apart source and drain regions in the first fin, with a channel region extending therebetween along top and side surfaces of the first fin, a floating gate that extends along a first portion of the channel region, a select gate that extends along a second portion of the channel region, a control gate that extends along and is insulated from the floating gate, and an erase gate that extends along and is insulated from the source region. A logic device formed on a second of the fins and including spaced apart logic source and logic drain regions in the second fin, with a logic channel region of the second fin extending therebetween, and a logic gate that extends along the logic channel region.
Type:
Grant
Filed:
April 19, 2018
Date of Patent:
November 5, 2019
Assignee:
Silicon Storage Technology, Inc.
Inventors:
Feng Zhou, Jinho Kim, Xian Liu, Serguei Jourba, Catherine Decobert, Nhan Do
Abstract: A memory device and method of erasing same that includes a substrate of semiconductor material and a plurality of memory cells formed on the substrate and arranged in an array of rows and columns. Each of the memory cells includes spaced apart source and drain regions in the substrate, with a channel region in the substrate extending there between, a floating gate disposed over and insulated from a first portion of the channel region which is adjacent the source region, a select gate disposed over and insulated from a second portion of the channel region which is adjacent the drain region, and a program-erase gate disposed over and insulated from the source region. The program-erase gate lines alone or in combination with the select gate lines, or the source lines, are arranged in the column direction so that each memory cell can be individually programmed, read and erased.
Abstract: Systems and methods are disclosed for processing data. In one exemplary implementation, there is provided a method of generating H output data from W data input streams produced from input data. Moreover, the method may include generating the H discrete output data components via application of the W data inputs to one or more transforming components or processes having specified mathematic operations and/or a generator matrix functionality, wherein the W data inputs are recoverable via a recovery process capable of reproducing the W data inputs from a subset (any W members) of the H output data streams.
Abstract: A memory device includes a semiconductor substrate having spaced apart source and drain regions, with a channel region of the substrate extending there between, a floating gate of polysilicon disposed over and insulated from a first portion of the channel region by insulation material having a first thickness, wherein the floating gate has a sloping upper surface that terminates in a sharp edge, a word line gate of polysilicon disposed over and insulated from a second portion of the channel region by insulation material having a second thickness, and an erase gate of polysilicon disposed over and insulated from the source region by insulation material having a third thickness, wherein the erase gate includes a notch that wraps around and is insulated from the sharp edge of the floating gate. The third thickness is greater than the first thickness, and the first thickness is greater than the second thickness.
Abstract: A memory device that provides individual memory cell read, write and erase. In an array of memory cells arranged in rows and columns, each column of memory cells includes a column bit line, a first column control gate line for even row cells and a second column control gate line for odd row cells. Each row of memory cells includes a row source line. In another embodiment, each column of memory cells includes a column bit line and a column source line. Each row of memory cells includes a row control gate line. In yet another embodiment, each column of memory cells includes a column bit line and a column erase gate line. Each row of memory cells includes a row source line, a row control gate line, and a row select gate line.
Type:
Grant
Filed:
February 8, 2019
Date of Patent:
August 20, 2019
Assignees:
Silicon Storage Technology, Inc., The Regents Of The University of California
Inventors:
Xinjie Guo, Farnood Merrikh Bayat, Dmitri Strukov, Nhan Do, Hieu Van Tran, Vipin Tiwari
Abstract: A memory device that generates a unique identifying number, and includes a plurality of memory cells and a controller. Each of the memory cells includes first and second regions formed in a semiconductor substrate, wherein a channel region of the substrate extends between the first and second regions, a floating gate disposed over and insulated from a first portion of the channel region, and a select gate disposed over and insulated from a second portion of the channel region. The controller is configured to apply one or more positive voltages to the first regions of the memory cells while the memory cells are in a subthreshold state for generating leakage current through each of the channel regions, measure the leakage currents, and generate a number based on the measured leakage currents.
Abstract: A method of bonding a first substrate to a second substrate, wherein the first substrate includes first electrical contacts on a top surface of the first substrate, and wherein the second substrate includes second electrical contacts on a bottom surface of the second substrate. The method includes forming a block of polyimide on the top surface of the first substrate, wherein the block of polyimide has a rounded upper corner, and vertically moving the top surface of the first substrate and the bottom surface of the second substrate toward each other until the first electrical contacts abut the second electrical contacts, wherein during the moving, the second substrate makes contact with the rounded upper corner of the polyimide causing the first and second substrates to move laterally relative to each other.
Type:
Grant
Filed:
March 14, 2018
Date of Patent:
August 13, 2019
Assignee:
Silicon Storage Technology, Inc.
Inventors:
Justin Hiroki Sato, Bomy Chen, Walter Lundy
Abstract: A method of forming split gate non-volatile memory cells on the same chip as logic and high voltage devices having HKMG logic gates. The method includes forming the source and drain regions, floating gates, control gates, and the poly layer for the erase gates and word line gates in the memory area of the chip. A protective insulation layer is formed over the memory area, and an HKMG layer and poly layer are formed on the chip, removed from the memory area, and patterned in the logic areas of the chip to form the logic gates having varying amounts of underlying insulation.
Type:
Grant
Filed:
September 11, 2017
Date of Patent:
August 13, 2019
Assignee:
Silicon Storage Technology, Inc.
Inventors:
Chien-Sheng Su, Jeng-Wei Yang, Feng Zhou
Abstract: A compressed fluid energy storage system includes a submersible fluid containment subsystem charged with a compressed working fluid and submerged and ballasted in a body of water, with the fluid containment subsystem having a substantially flat portion closing a domed portion. The system also includes a compressor and an expander disposed to compress and expand the working fluid. The fluid containment subsystem is at least in part flexible, and includes an upper portion for storing compressed energy fluid and a lower portion for ballast material. The lower portion may be tapered proximate the flat portion to prevent it from being collapsed by ballast materials. The region between the fluid and the ballast has exchange ports to communicate water between the inside and outside of the containment subsystem. In other embodiments, an open-bottomed fluid containment system is held in position underneath a ballast system by a tensegrity structure.
Type:
Grant
Filed:
January 14, 2015
Date of Patent:
July 30, 2019
Assignee:
Bright Energy Storage Technologies, LLP
Inventors:
Scott Raymond Frazier, Brian Von Herzen, Alex Lau
Abstract: A non-volatile memory cell includes a semiconductor substrate of first conductivity type, first and second spaced-apart regions in the substrate of second conductivity type, with a channel region in the substrate therebetween. A floating gate has a first portion disposed vertically over a first portion of the channel region, and a second portion disposed vertically over the first region. The floating gate includes a sloping upper surface that terminates with one or more sharp edges. An erase gate is disposed vertically over the floating gate with the one or more sharp edges facing the erase gate. A control gate has a first portion disposed laterally adjacent to the floating gate, and vertically over the first region. A select gate has a first portion disposed vertically over a second portion of the channel region, and laterally adjacent to the floating gate.
Type:
Grant
Filed:
July 2, 2015
Date of Patent:
June 4, 2019
Assignee:
Silicon Storage Technology, Inc.
Inventors:
Jeng-Wei Yang, Man-Tang Wu, Chun-Ming Chen, Chien-Sheng Su, Nhan Do
Abstract: A non-volatile memory cell formed on a semiconductor substrate having an upper surface with an upwardly extending fin with opposing first and second side surfaces. First and second electrodes are in electrical contact with first and second portions of the fin. A channel region of the fin includes portions of the first and second side surfaces that extend between the first and second portions of the fin. A floating gate extends along the first side surface of a first portion of the channel region, where no portion of the floating gate extends along the second side surface. A word line gate extends along the first and second side surfaces of a second portion of the channel region. A control gate is disposed over the floating gate. An erase gate has a first portion disposed laterally adjacent to the floating gate and a second portion disposed vertically over the floating gate.
Type:
Grant
Filed:
March 22, 2018
Date of Patent:
June 4, 2019
Assignee:
Silicon Storage Technology, Inc.
Inventors:
Serguei Jourba, Catherine Decobert, Feng Zhou, Jinho Kim, Xian Liu, Nhan Do
Abstract: A memory device and method of erasing same that includes a substrate of semiconductor material and a plurality of memory cells formed on the substrate and arranged in an array of rows and columns. Each of the memory cells includes spaced apart source and drain regions in the substrate, with a channel region in the substrate extending there between, a floating gate disposed over and insulated from a first portion of the channel region which is adjacent the source region, a select gate disposed over and insulated from a second portion of the channel region which is adjacent the drain region, and a program-erase gate disposed over and insulated from the source region. The program-erase gate lines alone or in combination with the select gate lines, or the source lines, are arranged in the column direction so that each memory cell can be individually programmed, read and erased.
Abstract: A memory device with memory cell pairs each having a single continuous channel region, first and second floating gates over first and second portions of the channel region, an erase gate over a third portion of the channel region between the first and second channel region portions, and first and second control gates over the first and second floating gates. For each of the pairs of memory cells, the first region is electrically connected to the second region of an adjacent pair of memory cells in the same active region, and the second region is electrically connected to the first region of an adjacent pair of the memory cells in the same active region.
Type:
Grant
Filed:
November 6, 2015
Date of Patent:
June 4, 2019
Assignee:
Silicon Storage Technology, Inc.
Inventors:
Hieu Van Tran, Hung Quoc Nguyen, Nhan Do
Abstract: A method of forming a non-volatile memory cell on a substrate having memory cell and logic circuit regions by forming a pair of conductive floating gates in the memory cell region, forming a first source region in the substrate between the pair of floating gates, forming a polysilicon layer in both regions, forming an oxide layer over the polysilicon layer in the logic circuit region, performing a chemical-mechanical polish of the polysilicon layer in the memory cell area leaving a first block of the polysilicon layer between the floating gates that is separated from remaining portions of the polysilicon layer, and selectively etching portions of the polysilicon layer to result in: second and third blocks of the polysilicon layer disposed in outer regions of the memory cell area, and a fourth block of the polysilicon layer in the logic circuit region.
Type:
Grant
Filed:
April 22, 2017
Date of Patent:
April 30, 2019
Assignee:
Silicon Storage Technology, Inc.
Inventors:
Chunming Wang, Leo Xing, Andy Liu, Melvin Diao, Xian Liu, Nhan Do
Abstract: A memory device includes a metal oxide material disposed between and in electrical contact with first and second conductive electrodes, and an electrical current source configured to apply one or more electrical current pulses through the metal oxide material. For each of the one or more electrical current pulses, an amplitude of the electrical current increases over time during the electrical current pulse to form a conductive filament in metal oxide material.
Type:
Grant
Filed:
May 17, 2017
Date of Patent:
April 30, 2019
Assignees:
Silicon Storage Technology, Inc., Agency For Science, Technology, And Research
Inventors:
Santosh Hariharan, Hieu Van Tran, Feng Zhou, Xian Liu, Steven Lemke, Nhan Do, Zhixian Chen, Xinpeng Wang