Patents Assigned to Taiwan Semiconductor Manufacturing Company, Ltd.
  • Patent number: 11069810
    Abstract: A source/drain region of a semiconductor device is formed using an epitaxial growth process. In an embodiment a first step comprises forming a bulk region of the source/drain region using a first precursor, a second precursor, and an etching precursor. A second step comprises cleaning the bulk region with the etchant along with introducing a shaping dopant to the bulk region in order to modify the crystalline structure of the exposed surfaces. A third step comprises forming a finishing region of the source/drain region using the first precursor, the second precursor, and the etching precursor.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: July 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Min Huang, Shih-Chieh Chang, Cheng-Han Lee
  • Patent number: 11069805
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: July 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Patent number: 11069785
    Abstract: A semiconductor device and a fabrication method thereof are provided. The semiconductor device includes a semiconductor structure, a dielectric layer, a metal-semiconductor compound film and a cover layer. The semiconductor structure has an upper surface and a lateral surface. The dielectric layer encloses the lateral surface of the semiconductor structure and exposes the upper surface of the semiconductor structure. The metal-semiconductor compound film is on the semiconductor structure, wherein the dielectric layer exposes a portion of a surface of the metal-semiconductor compound film. The cover layer encloses the portion of the surface of the metal-semiconductor compound film exposed by the dielectric layer, and exposes the dielectric layer.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: July 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Chun-Han Tsao, Chih-Ming Chen, Han-Yu Chen, Szu-Yu Wang, Lan-Lin Chao, Cheng-Yuan Tsai
  • Patent number: 11070208
    Abstract: A voltage level shifter for an SRAM device includes a level shifter input and provides a second voltage level. A voltage input terminal receives a first signal at a first voltage level and an inverter having an input and an output with the voltage input terminal is connected to the inverter input. A first voltage selector selectively applies an intermediate voltage to the gate of a PMOS transistor in a first complementary pair when the voltage of a complementary level shift output voltage rises to a logical 1 and a second voltage selector applies the intermediate voltage to the gate of a PMOS transistor in a second complementary pair when the voltage of the level shift output voltage node rises to a logical 1. The PMOS transistor current is thereby reduced resulting in lower energy dissipation and supporting a larger voltage separation between the first and second voltage levels.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: July 20, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Sanjeev Kumar Jain
  • Publication number: 20210217671
    Abstract: An apparatus for detecting an endpoint of a grinding process includes a connecting device, a timer and a controller. The connecting device is connected to a sensor that periodically senses an interface of a reconstructed wafer comprising a plurality of dies of at least two types to generate a thickness signal comprising thicknesses from a surface of an insulating layer of the reconstructed wafer to the interface of the reconstructed wafer. The timer is configured to generate a clock signal having a plurality of pulses with a time interval. The controller is coupled to the sensor and the timer, and configured to filter the thickness signal according to the clock signal to output a thickness extremum among the thicknesses in the thickness signal within each time interval, wherein the thickness signal after the filtering is used to determine the endpoint of the grinding process being performed on the reconstructed wafer.
    Type: Application
    Filed: March 28, 2021
    Publication date: July 15, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Chao Mao, Chin-Chuan Chang, Szu-Wei Lu
  • Publication number: 20210217715
    Abstract: A package structure has a first die, a second die, the third die, a molding compound, a first redistribution layer, an antenna and conductive elements. The first die, the second die and the third die are molded in a molding compound. The first redistribution layer is disposed on the molding compound and is electrically connected to the first die, the second die and the third die. The antenna is located on the molding compound and electrically connected to the first die, the second die and the third die, wherein a distance of an electrical connection path between the first die and the antenna is smaller than or equal to a distance of an electrical connection path between the second die and the antenna and a distance of an electrical connection path between the third die and the antenna. The conductive elements are connected to the first redistribution layer, wherein the first redistribution layer is located between the conductive elements and the molding compound.
    Type: Application
    Filed: April 1, 2021
    Publication date: July 15, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Kuo-Chung Yee
  • Publication number: 20210217682
    Abstract: A semiconductor device including a circuit substrate, a chip package, and a stiffener ring is provided. The chip package is disposed on and electrically connected to the circuit substrate, the chip package includes a pair of first parallel sides and a pair of second parallel sides shorter than the pair of first parallel sides. The stiffener ring is disposed on the circuit substrate, the stiffener ring includes first stiffener portions extending along a direction substantially parallel with the pair of first parallel sides and second stiffener portions extending along the direction substantially parallel with the pair of second parallel sides. The first stiffener portions are connected to the second stiffener portions, and the second stiffener portions is mechanically weaker than the first stiffener portions. A semiconductor device including stiffener lids is also provided.
    Type: Application
    Filed: April 1, 2021
    Publication date: July 15, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Chia Chiu, Li-Han Hsu
  • Publication number: 20210215894
    Abstract: A method for forming a package structure is provided. The method includes disposing an optical component and a waveguide over a substrate, forming a passivation layer over the substrate and covering the optical component and the waveguide, and forming a reflector including a metal layer and a first semiconductor layer on the passivation layer, wherein the metal layer and the first semiconductor layer are in contact with the passivation layer.
    Type: Application
    Filed: March 10, 2021
    Publication date: July 15, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Hui Huang, Jui-Hsieh Lai, Shang-Yun Hou
  • Publication number: 20210217751
    Abstract: Semiconductor structures are provided. Each transistor includes a first source/drain region over a semiconductor fin, a second source/drain region over the semiconductor fin, a channel region in the semiconductor fin and between the first and second source/drain regions, and a metal gate electrode formed on the channel region and extending in a second direction. In a first transistor of the transistors, the first source/drain region is formed between the metal gate electrode of the first transistor and the metal gate electrode of a second transistor of the transistors. The second source/drain region is formed between the metal gate electrode of the first transistor and the dielectric-base dummy gate. A first contact of the first source/drain region is separated from a spacer of the metal gate electrode of the first transistor. A second contact of the second source/drain region is in contact with a spacer of the dielectric-base dummy gate.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 15, 2021
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon-Jhy LIAW
  • Patent number: 11061333
    Abstract: A method of manufacturing a semiconductor device and a semiconductor processing system are provided. The method includes the following steps. A photoresist layer is formed on a substrate in a lithography tool. The photoresist layer is exposed in the lithography tool to form an exposed photoresist layer. The exposed photoresist layer is developed to form a patterned photoresist layer in the lithography tool by using a developer. An ammonia gas by-product of the developer is removed from the lithography tool.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kai Chen, Chia-Hung Chung, Ko-Bin Kao, Su-Yu Yeh, Li-Jen Wu, Zhi-You Ke, Ming-Hung Lin
  • Patent number: 11061317
    Abstract: The present disclosure provides one embodiment of an IC method that includes receiving an IC design layout, which has a plurality of main features and a plurality of space blocks. The IC method also includes calculating an optimized block dummy density ratio r0 to optimize a uniformity of pattern density (UPD), determining a target block dummy density ratio R, determining size, pitch and type of a non-printable dummy feature, generating a pattern for dummy features and adding the dummy features in the IC design layout.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: July 13, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jyuh-Fuh Lin, Cheng-Hung Chen, Pei-Yi Liu, Wen-Chuan Wang, Shy-Jay Lin, Burn Jeng Lin
  • Patent number: 11062978
    Abstract: In an embodiment, a device includes: an integrated circuit die; a first dielectric layer over the integrated circuit die; a first metallization pattern extending through the first dielectric layer to electrically connect to the integrated circuit die; a second dielectric layer over the first metallization pattern; an under bump metallurgy extending through the second dielectric layer; a third dielectric layer over the second dielectric layer and portions of the under bump metallurgy; a conductive ring sealing an interface of the third dielectric layer and the under bump metallurgy; and a conductive connector extending through the center of the conductive ring, the conductive connector electrically connected to the under bump metallurgy.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Yu Chen, An-Jhih Su, Der-Chyang Yeh, Li-Hsien Huang, Ming Shih Yeh
  • Patent number: 11062987
    Abstract: A semiconductor device includes a substrate, a first redistribution layer (RDL) over a first side of the substrate, one or more semiconductor dies over and electrically coupled to the first RDL, and an encapsulant over the first RDL and around the one or more semiconductor dies. The semiconductor device also includes connectors attached to a second side of the substrate opposing the first side, the connectors being electrically coupled to the first RDL. The semiconductor device further includes a polymer layer on the second side of the substrate, the connectors protruding from the polymer layer above a first surface of the polymer layer distal the substrate. A first portion of the polymer layer contacting the connectors has a first thickness, and a second portion of the polymer layer between adjacent connectors has a second thickness smaller than the first thickness.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Chi-Hsi Wu, Chen-Hua Yu, Po-Hao Tsai
  • Patent number: 11062971
    Abstract: A packaged semiconductor device and a method and apparatus for forming the same are disclosed. In an embodiment, a method includes bonding a device die to a first surface of a substrate; depositing an adhesive on the first surface of the substrate; depositing a thermal interface material on a surface of the device die opposite the substrate; placing a lid over the device die and the substrate, the lid contacting the adhesive and the thermal interface material; applying a clamping force to the lid and the substrate; and while applying the clamping force, curing the adhesive and the thermal interface material.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wensen Hung, Tsung-Yu Chen, Tsung-Shu Lin, Chen-Hsiang Lao, Wen-Hsin Wei, Hsien-Pin Hu
  • Patent number: 11063152
    Abstract: A semiconductor device including a source/drain region having a V-shaped bottom surface and extending below gate spacers adjacent a gate stack and a method of forming the same are disclosed. In an embodiment, a method includes forming a gate stack over a fin; forming a gate spacer on a sidewall of the gate stack; etching the fin with a first anisotropic etch process to form a first recess adjacent the gate spacer; etching the fin with a second etch process using etchants different from the first etch process to remove an etching residue from the first recess; etching surfaces of the first recess with a third anisotropic etch process using etchants different from the first etch process to form a second recess extending below the gate spacer and having a V-shaped bottom surface; and epitaxially forming a source/drain region in the second recess.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Wei Lee, Hsueh-Chang Sung, Yen-Ru Lee, Jyun-Chih Lin, Tzu-Hsiang Hsu, Feng-Cheng Yang
  • Patent number: 11063038
    Abstract: A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a first IC die comprises a first bonding structure and a first interconnect structure over a first semiconductor substrate. A second IC die is disposed over the first IC die and comprises a second bonding structure and a second interconnect structure over a second semiconductor substrate. A seal-ring structure extends from the first semiconductor substrate to the second semiconductor substrate. A plurality of through silicon via (TSV) coupling structures is arranged in the peripheral region of the 3D IC along an inner perimeter of the seal-ring structure and closer to the 3D IC than the seal-ring structure. The plurality of TSV coupling structures respectively comprises a TSV disposed in the second semiconductor substrate and electrically coupling to the 3D IC through a stack of TSV wiring layers and inter-wire vias.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kong-Beng Thei, Dun-Nian Yaung, Fu-Jier Fan, Hsing-Chih Lin, Hsiao-Chin Tuan, Jen-Cheng Liu, Alexander Kalnitsky, Yi-Sheng Chen
  • Patent number: 11063019
    Abstract: A chip structure includes first and second semiconductor chips. The first semiconductor chip includes a first semiconductor substrate, a first interconnection layer located on the first semiconductor substrate, a first protection layer covering the first interconnection layer, a gap fill layer located on the first protection layer, and first conductive vias embedded in the gap fill layer and electrically connected with the first interconnection layer.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Fa Chen, Sung-Feng Yeh, Tzuan-Horng Liu, Chao-Wen Shih
  • Patent number: 11063023
    Abstract: The present disclosure provides a semiconductor package, including a semiconductor die layer and a through insulator via (TIV). The semiconductor die layer has an active surface. The TIV is electrically coupled to the active surface. The TIV includes a body and a mesa. The body is surrounded by molding compound. The mesa has a tapered sidewall over the body. A portion of the tapered sidewall is covered by a seed layer.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: July 13, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Feng-Cheng Hsu, Jui-Pin Hung, Shin-Puu Jeng
  • Patent number: 11060977
    Abstract: A bio-chip package comprises a substrate a first layer over the substrate comprising an image sensor. The bio-chip package also comprises a second layer over the first layer. The second layer comprises a waveguide system a grating coupler. The bio-chip package also comprises a third layer arranged to accommodate a fluid between a first-third layer portion and a second-third layer portion, and to allow the fluid to pass from a first side of the third layer to a second side of the third layer. The third layer comprises a material having a predetermined transparency with respect to a wavelength of a received source light, the waveguide system is configured to direct the received source light to the grating coupler, and the image sensor is configured to determine a change in the wavelength of the source light caused by a coupling between the source light and the fluid.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui Hsieh Lai, Ying-Hao Kuo
  • Patent number: 11063081
    Abstract: Various embodiments of the present application are directed towards a semiconductor-on-insulator (SOI) DoP image sensor and a method for forming the SOI DoP image sensor. In some embodiments, a semiconductor substrate comprises a floating node and a collector region. A photodetector is in the semiconductor substrate and is defined in part by a collector region. A transfer transistor is over the semiconductor substrate. The collector region and the floating node respectively define source/drain regions of the transfer transistor. A semiconductor mesa is over and spaced from the semiconductor substrate. A readout transistor is on and partially defined by the semiconductor mesa. The semiconductor mesa is between the readout transistor and the semiconductor substrate. A via extends from the floating node to a gate electrode of the readout transistor.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhy-Jyi Sze, Dun-Nian Yaung, Alexander Kalnitsky