Patents Assigned to Tela Innovations, Inc.
  • Patent number: 8207053
    Abstract: A layout of a cell of a semiconductor device is disclosed to include a diffusion level layout including a plurality of diffusion region layout shapes. The layout of the cell also includes a gate electrode level layout is defined to include a number of linear-shaped layout features placed to extend in only a first parallel direction. Each of the number of the linear-shaped layout features within the gate electrode level layout of the restricted layout region is rectangular-shaped. The gate electrode level layout includes linear-shaped layout features defined along at least four different lines of extent in the first parallel direction. The layout of the cell also includes a number of interconnect level layouts each of which is defined to pattern conductive features within corresponding interconnect levels above the gate electrode level.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: June 26, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8198656
    Abstract: A cell of a semiconductor device is disclosed to include a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell also includes a gate electrode level including a number of conductive features defined to extend in only a first parallel direction. Each of the conductive features within the gate electrode level is fabricated from a respective originating rectangular-shaped layout feature. The gate electrode level includes conductive features defined along at least four different virtual lines of extent in the first parallel direction. A width size of the conductive features within a five wavelength photolithographic interaction radius within the gate electrode level is less than a wavelength of light of 193 nanometers. The cell also includes a number of interconnect levels formed above the gate electrode level.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20120144360
    Abstract: A method is disclosed for defining an integrated circuit. The method includes generating a digital data file that includes both electrical connection information and physical topology information for a number of circuit components. The method also includes operating a computer to execute a layout generation program. The layout generation program reads the electrical connection and physical topology information for each of the number of circuit components from the digital data file and automatically creates one or more layout structures necessary to form each of the number of circuit components in a semiconductor device fabrication process, such that the one or more layout structures comply with the physical topology information read from the digital data file. The computer is also operated to store the one or more layout structures necessary to form each of the number of circuit components in a digital format on a computer readable medium.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 7, 2012
    Applicant: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Daryl Fox, Jonathan R. Quandt, Scott T. Becker
  • Patent number: 8185865
    Abstract: Methods for generating a biased layout for making an integrated circuit are disclosed. One such method includes obtaining a nominal layout defined by one or more cells, where each cell has one or more transistor gate features with a nominal gate length. Then, obtaining an annotated layout. The annotated layout contains information describing gate-length biasing of one or more of the transistor gate features in one or more cells of the nominal layout. A biased layout is produced by modifying the nominal layout using the information from the annotated layout. The biasing modifies a gate length of those transistor gate features identified by the information of the annotated layout.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: May 22, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Puneet Gupta, Andrew B. Kahng
  • Publication number: 20120118854
    Abstract: A linear-shaped core structure of a first material is formed on an underlying material. A layer of a second material is conformally deposited over the linear-shaped core structure and exposed portions of the underlying material. The layer of the second material is etched so as to leave a filament of the second material on each sidewall of the linear-shaped core structure, and so as to remove the second material from the underlying material. The linear-shaped core structure of the first material is removed so as to leave each filament of the second material on the underlying material. Each filament of the second material provides a mask for etching the underlying material. Each filament of the second material can be selectively etched further to adjust its size, and to correspondingly adjust a size of a feature to be formed in the underlying material.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 17, 2012
    Applicant: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 8138525
    Abstract: A cell of a semiconductor device includes a substrate portion formed to include at least one p-type diffusion region and at least one n-type diffusion region separated by non-active regions. The cell includes a gate electrode level including a number of conductive features defined to extend in only a first parallel direction. Each of the conductive features within the gate electrode level is fabricated from a respective originating rectangular-shaped layout feature. A width size of the conductive features within a five wavelength photolithographic interaction radius within the gate electrode level is less than a wavelength of light of 193 nanometers. Some of the conductive features form respective PMOS and/or NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the cell is greater than or equal to eight. The cell also includes a number of interconnect levels formed above the gate electrode level.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 20, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8134186
    Abstract: A cell of a semiconductor device includes a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell also includes a gate electrode level including conductive features defined to extend in only a first parallel direction. Adjacent ones of the conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. Some of the conductive features form respective PMOS and/or NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the cell is greater than or equal to eight. The cell also includes a number of interconnect levels formed above the gate electrode level.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 13, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8134184
    Abstract: A layout of a cell of a semiconductor device is disclosed to include a diffusion level layout including a plurality of diffusion region layout shapes, including a p-type and an n-type diffusion region separated by a central inactive region. The layout of the cell includes a gate electrode level layout corresponding to an entire gate level of the cell. The gate electrode layout includes a number of linear-shaped layout features placed to extend in only a first parallel direction. Each of the number of the linear-shaped layout features within the gate electrode level layout of the restricted layout region is rectangular-shaped. Linear-shaped layout features within the gate electrode level layout extend over one or more of the p-type and/or n-type diffusion regions to form PMOS and NMOS transistor devices. A number of the PMOS transistor devices is equal to a number of the NMOS transistor devices in the cell.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 13, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8134185
    Abstract: A layout of a cell of a semiconductor device is disclosed to include a diffusion level layout including a plurality of diffusion region layout shapes, including a p-type and an n-type diffusion region separated by a central inactive region. The layout of the cell includes a gate electrode level layout corresponding to an entire gate level of the cell. The gate electrode layout includes a number of linear-shaped layout features placed to extend in only a first parallel direction. Each of the number of the linear-shaped layout features within the gate electrode level layout of the restricted layout region is rectangular-shaped. Linear-shaped layout features within the gate electrode level layout extend over one or more of the p-type and/or n-type diffusion regions to form PMOS and NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the cell is greater than or equal to eight.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 13, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8134183
    Abstract: A semiconductor device includes a substrate portion having a plurality of diffusion regions defined therein. A gate electrode level region is formed above the substrate portion to include conductive features defined to extend in only a first parallel direction. Adjacent ones of the conductive features that share a common line of extent are fabricated from respective originating layout features separated from each other by an end-to-end spacing of substantially equal and minimum size across the gate electrode level region. A width of the conductive features within a 5 wavelength photolithographic interaction radius is less than a 193 nanometer wavelength of light used in a photolithography process for their fabrication. Some conductive features extend over the plurality of diffusion regions to form PMOS or NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the gate electrode level region is greater than or equal to eight.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 13, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8129754
    Abstract: A cell of a semiconductor device is disclosed to include a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell also includes a gate electrode level including a number of conductive features defined to extend in only a first parallel direction. Each of the conductive features within the gate electrode level is fabricated from a respective originating rectangular-shaped layout feature. The gate electrode level includes conductive features defined along at least four different virtual lines of extent in the first parallel direction. The cell also includes a number of interconnect levels formed above the gate electrode level.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 6, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8129753
    Abstract: A layout of a cell of a semiconductor device is disclosed to include a diffusion level layout including a plurality of diffusion region layout shapes, including p-type and n-type diffusion regions. The layout of the cell also includes a gate electrode level layout defined to include a number of linear-shaped layout features placed to extend in only a first parallel direction. Each of the number of the linear-shaped layout features within the gate electrode level layout of the restricted layout region is rectangular-shaped. Linear-shaped layout features within the gate electrode level layout extend over one or more of the p-type and/or n-type diffusion regions to form PMOS and NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the cell is greater than or equal to eight.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 6, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8129751
    Abstract: A semiconductor device includes a substrate portion having a plurality of diffusion regions defined therein in a non-symmetrical manner relative to a virtual line defined to bisect the substrate portion. The semiconductor device includes a gate electrode level region including a number of conductive features defined to extend in only a first parallel direction. Adjacent ones of the conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features separated by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. Conductive features are defined along at least four different virtual lines of extent in the first parallel direction. A width of the conductive features is less than a wavelength of light used in a photolithography process for their fabrication.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 6, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8129752
    Abstract: A semiconductor device includes a substrate portion including a plurality of diffusion regions defined in a non-symmetrical manner relative to a virtual bisecting line. A gate electrode level region above the substrate portion includes a number of conductive features that extend in only a first parallel direction. Adjacent conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features separated by an equal and minimal sized end-to-end spacing. Conductive features are defined along at least four different virtual lines of extent in the first parallel direction. A width of the conductive features within a photolithographic interaction radius is less than a wavelength of light of 193 nanometers as used in a photolithography process for their fabrication. The photolithographic interaction radius is five times the wavelength of light used in the photolithography process.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 6, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8129755
    Abstract: A cell of a semiconductor device is disclosed to include a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell also includes a gate electrode level including a number of conductive features defined to extend in only a first parallel direction. Adjacent ones of the number of conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. The gate electrode level includes conductive features defined along at least four different virtual lines of extent in the first parallel direction. The cell also includes a number of interconnect levels formed above the gate electrode level.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 6, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8129819
    Abstract: A layout of a cell of a semiconductor device is disclosed to include a diffusion level layout including a plurality of diffusion region layout shapes, including p-type and n-type diffusion regions. The layout of the cell also includes a gate electrode level layout is defined to include a number of linear-shaped layout features placed to extend in only a first parallel direction. Each of the number of the linear-shaped layout features within the gate electrode level layout of the restricted layout region is rectangular-shaped. Linear-shaped layout features within the gate electrode level layout extend over one or more of the p-type and/or n-type diffusion regions to form PMOS and NMOS transistor devices. A number of the PMOS transistor devices is equal to a number of the NMOS transistor devices in the cell.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 6, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8129756
    Abstract: A cell of a semiconductor device is disclosed to include a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell also includes a gate electrode level including conductive features defined to extend in only a first parallel direction. Adjacent ones of the conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. The gate electrode level includes conductive features defined along at least four different virtual lines of extent in the first parallel direction. A width of the conductive features is less than a wavelength of light used in a photolithography process for their fabrication.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 6, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8129757
    Abstract: A cell of a semiconductor device includes a diffusion level including a plurality of diffusion regions separated by inactive regions. The cell also includes a gate electrode level including conductive features defined to extend in only a first parallel direction. Adjacent ones of the conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal and minimized across the gate electrode level. Some of the conductive features form respective PMOS and/or NMOS transistor devices. A total number of the PMOS and NMOS transistor devices in the cell is greater than or equal to eight. A width of the conductive features in the gate electrode level is less than a wavelength of light used in a photolithography process for their fabrication.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 6, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8129750
    Abstract: A semiconductor device includes a substrate portion having a plurality of diffusion regions defined therein in a non-symmetrical manner relative to a virtual line defined to bisect the substrate portion. The semiconductor device includes a gate electrode level region including a number of conductive features defined to extend in only a first parallel direction. Adjacent ones of the number of conductive features that share a common line of extent in the first parallel direction are fabricated from respective originating layout features that are separated from each other by an end-to-end spacing having a size that is substantially equal across the gate electrode level region and is minimized to an extent allowed by a semiconductor device manufacturing capability. The gate electrode level region includes conductive features defined along at least four different virtual lines of extent in the first parallel direction.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: March 6, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8127266
    Abstract: Methods and apparatus for a gate-length biasing methodology for optimizing integrated digital circuits are described. The gate-length biasing methodology replaces a nominal gate-length of a transistor with a biased gate-length, where the biased gate-length includes a bias length that is small compared to the nominal gate-length. In an exemplary embodiment, the bias length is less than 10% of the nominal gate-length.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: February 28, 2012
    Assignee: Tela Innovations, Inc.
    Inventors: Puneet Gupta, Andrew B. Kahng