Patents Assigned to Texas Tech University System
  • Patent number: 11195968
    Abstract: A method for fabricating a neutron detector includes providing an epilayer wafer of Boron-10 enriched hexagonal boron nitride (h-10BN or h-BN or 10BN or BN) having a thickness (t), dicing or cutting the epilayer wafer into one or more BN strips having a width (W) and a length (L), and depositing a first metal contact on a first surface of at least one of the BN strip and a second metal contact on a second surface of the at least one BN strip. The neutron detector includes an electrically insulating submount, a BN epilayer of Boron-10 enriched hexagonal boron nitride (h-10BN or h-BN or 10BN or BN) placed on the insulating submount, a first metal contact deposited on a first surface of the BN epilayer, and a second metal contact deposited on a second surface of the BN epilayer.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: December 7, 2021
    Assignee: Texas Tech University System
    Inventors: Hongxing Jiang, Jingyu Lin, Jing Li, Avisek Maity, Sam Grenadier
  • Patent number: 11187692
    Abstract: An apparatus or method determines a content of the one or more elements of a solid matrix by scanning the solid matrix using a PXRF spectrometer and a color sensor, receiving a PXRF spectra from the PXRF spectrometer and a numerical color data from the color sensor, extracting a value for each of the one or more elements the PXRF spectra, determining the content of the one or more elements of the solid matrix using one or more processors and a predictive model that relates the value of each of the one or more elements and the numerical color data to the content of the one or more elements of the solid matrix, and providing the content of the one or more elements of the solid matrix to one or more input/output interfaces.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: November 30, 2021
    Assignee: Texas Tech University System
    Inventors: David Weindorf, Delaina Pearson, Somsubhra Chakraborty
  • Patent number: 11173262
    Abstract: The disclosure provides a way to supplement the tidal volume delivered to the patient by a leaking re-breather when the delivered volume becomes less than that set by the ventilator (in either pressure-regulated or volume modes). This may be accomplished with a shunt—a gas conduit joining the non-patient side of the re-breather to the patient side. A low-resistance, plenum or a draw-over vaporizer may also be incorporated into the gas pathway. Such a device may include a housing with a movable partition separating an actuating side from a patient side. The housing includes a ventilator orifice for pneumatic communication between a ventilator and the actuating side and a patient orifice for pneumatic communication between the patient side and a patient. A shunt defines a bypass flow path from the actuating side and to the patient side when the moveable partition is at a maximal displacement towards the patient side.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 16, 2021
    Assignee: Texas Tech University System
    Inventor: Bradley P. Fuhrman
  • Patent number: 11177021
    Abstract: The present invention includes a method for thermodynamic modeling of asphaltene precipitation comprising: calculating the Gibbs free energy for the transition between asphaltene molecules in solution into an imaginary crystalline asphaltene nanoaggregates or asphaltene nanocrystals; calculating the Gibbs free energy for the transition between asphaltene nanoaggregates or nanocrystals redissolving into colloidal asphaltene nanoaggregates using the computer: and predicting asphaltene solubility in a solvent, wherein the predicted asphaltene solubility is used to add a solvent to a liquid, semi-solid, or solid comprising asphaltenes to prevent, e.g., fouling of a wellbore, pipeline, downstream unit operations, to provide flow assurance for crude oil pipeline network, or for petroleum crude blending.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: November 16, 2021
    Assignee: Texas Tech University System
    Inventors: Chau-Chyun Chen, Yifan Hao, Meng Wang, Md Rashedul Islam
  • Patent number: 11169064
    Abstract: Disclosed is a system for determining fecundity of an embryo utilizing a non¬ invasive grading of early stage embryos (pre-hatching) based upon specific gravity, density and/or estimated weight. The system allows 100% recovery of embryos and can detect differences in growth potential at the earliest stages of development. The system may further enhance the development of embryos by utilization of microfluidic effects during use. The disclosed system supports a wide variety of scenarios for human and animal reproductive technologies and related products and services.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 9, 2021
    Assignee: Texas Tech University System
    Inventors: Samuel D. Prien, Lindsay L. Penrose
  • Publication number: 20210309607
    Abstract: Disclosed is a composition and method for a therapeutic treatment that is able to combat triple negative breast cancers (TNBCs). The class of urea compounds acts by blocking at inhibiting the mTOR signaling pathway, which, as a central regulator of mammalian metabolism and physiology that when inhibited leads to the induction of autophagocytosis. The disclosed compounds are further capable of reinitiating the p53 cycle as well as inhibition of the BNIP3/BNIP3L pathway. The disclosed compounds also shows the ability to cross the blood-brain-barrier where metastases can form. This new drug has the potential to be a powerful new treatment to combat invasive TNBCs.
    Type: Application
    Filed: August 9, 2019
    Publication date: October 7, 2021
    Applicant: Texas Tech University System
    Inventors: Nadezhda German, Ruwein Zhang, Wei Wang, Constantinos Mikelis, Luca Cucullo
  • Patent number: 11091468
    Abstract: Compounds with anti-viral properties are provided that are based on the following structures: A variety of heteroaromatic groups have been found to be biologically active against the Zika (ZIKV) virus. In some embodiments, a dimeric compound is provided with each monomer linked by a repeating glycol linking group.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: August 17, 2021
    Assignees: Research Foundation of the City University of New York, Texas Tech University System
    Inventors: Adam B. Braunschweig, Kalanidhi Palanichamy, M. Fernando Bravo, Milan A. Shlain, Himanshu Garg, Anjali Joshi
  • Patent number: 11092532
    Abstract: The present invention includes method and device for label-free holographic screening and enumeration of tumor cells in bulk flow comprising: a laser source, a micro-objective, a pinhole device and a collimating lens, a mirror, a sample chamber with a sample flow inlet on a first side of the sample chamber and a sample flow outlet connected by a microchannel, and a detector, wherein the collimated laser beam passes through microchannel and interacts with cells in the sample to generate a respective hologram at the detector, wherein a processor calculates a numerical reconstruction from the respective hologram and generates a focused image of the numerous cells using the numerical reconstruction, wherein the numerous cells are enumerated by looking at a size, a maximum intensity and a mean intensity of the focused image.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: August 17, 2021
    Assignee: Texas Tech University System
    Inventors: Dhananjay Kumar Singh, Caroline C. Ahrens, Wei Li, Siva A. Vanapalli
  • Publication number: 20210238593
    Abstract: The present invention includes methods for detecting and reducing or inhibiting ischemic stroke in a mammal, the method comprising: (a) selecting microRNAs to downregulate selected from the group consisting of hsa-miR-96-5p, hsa-miR-99a-5p, hsa-miR-122-5p, hsa-miR-186-5p, hsa-miR-211-5p, hsa-mir-760, PC-3p-57664, orPC-5p-12969, (b) selecting microR-NAs to upregulate selected from the group consisting of ggo-miR-139, hsa-miR-30d-5p, hsa-miR-22-3p, hsa-miR-23a-3p, mmu-miR-5124a, mmu-mir-6240-5p, PC-3p-32463, or PC-5p-211, and combinations thereof, and (c) administering an agent that: downregulates that targets in (a), upregulates the targets in (b), or both, to the subject in an amount sufficient to reduce or inhibit ischemic stroke in the mammal. The present invention also includes the detection of the markers for use with stroke patients.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 5, 2021
    Applicant: Texas Tech University System
    Inventors: P. Hemachandra REDDY, Murali VIJAYAN
  • Publication number: 20210222532
    Abstract: Methods for optimization of liquid oil production by huff-n-puff in shale reservoirs to achieve an improved (and optimal) oil recovery factor. The process determines and utilizes the optimum huff and puff times, number of cycles and soaking time under practical operation and reservoir conditions. The huff time in the process is a period so long that the pressure near the wellbore reaches the set maximum injection pressure during the huff period. The puff time in the process is the time required for the pressure near the wellbore to reach the set minimum production pressure during the puff period. Soaking is typically not necessary during the huff-n-puff gas injection in shale oil reservoirs. The number of huff-n-puff cycles is determinable by the time in which the economic rate cut-off is reached.
    Type: Application
    Filed: April 2, 2021
    Publication date: July 22, 2021
    Applicant: Texas Tech University System
    Inventor: James J. Sheng
  • Patent number: 11060995
    Abstract: The present invention provides for a device and method for the rapid detection (within seconds) of viruses and virions (proteins and nucleic acids) found in novel coronavirus (SARS-CoV-2), Human Immunodeficiency Virus (HIV), and other pandemic viruses. The device can be used at front line, hospitals, clinical laboratories, airports, groceries, homes, and the like. The device can be used as a single probe for single use or home use, or the device integrated into a carrousel or multiple probe magazine for fast detection of multiple samples simultaneously. This carrousel would facilitate multiple testing at times of pandemics when a large number of samples have to be tested in short periods of time.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: July 13, 2021
    Assignee: Texas Tech University System
    Inventors: Gerardine G. Botte, Ashwin Ramanujam
  • Patent number: 11008840
    Abstract: Methods for optimization of liquid oil production by huff-n-puff in shale reservoirs to achieve an improved (and optimal) oil recovery factor. The process determines and utilizes the optimum huff and puff times, number of cycles and soaking time under practical operation and reservoir conditions. The huff time in the process is a period so long that the pressure near the wellbore reaches the set maximum injection pressure during the huff period. The puff time in the process is the time required for the pressure near the wellbore to reach the set minimum production pressure during the puff period. Soaking is typically not necessary during the huff-n-puff gas injection in shale oil reservoirs. The number of huff-n-puff cycles is determinable by the time in which the economic rate cut-off is reached.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 18, 2021
    Assignee: Texas Tech University System
    Inventor: James J. Sheng
  • Publication number: 20210134536
    Abstract: High-frequency supercapacitors that can respond at kilohertz frequencies (AC-supercapacitors). The electrodes of the AC-supercapacitors include edge oriented graphene (EOG) electrodes or carbon nanofiber network (CNN) electrodes. The EOG electrodes are formed by utilizing a plasma and feedstock carbon gas to carbonize cellulous paper and deposit graphene implemented in one step. The CNN electrodes are formed by pyrolyzing a carbon nanofiber network utilizing a plasma.
    Type: Application
    Filed: November 3, 2020
    Publication date: May 6, 2021
    Applicant: Texas Tech University System
    Inventor: Zhaoyang Fan
  • Patent number: 10987367
    Abstract: The present invention includes a molecule, a method of identifying said molecule, and a method of using said molecule to inhibit the interaction of A? and Drp1 proteins. The molecules including diethyl (3,4-dihydroxyphenethylamine)(quinolin-4-yl)methylphosphonate (DDQ); [10-(4,5-dimethoxy2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl]triphenylphosphonium methanesulfonate (MitoQ); 3-Hydroxynaphthalene-2-carboxylic acid (3,4-dihydroxy-benzylidene)-hydrazide (Dynasore); and/or 3-(2,4Dichloro-5-methoxyphenyl)-2,3-dihydro-2-thioxo-4(1H)-quinazolinone/3-(2,4-Dichloro-5-methoxyphenyl)-2-sulfanyl-4(3H)-quinazolinone (Mdivi-1).
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: April 27, 2021
    Assignee: Texas Tech University System
    Inventors: Hemachandra Reddy, Chandra Sekhar Kurova
  • Patent number: 10968451
    Abstract: Nucleic acid molecules such as shRNA clusters and artificial miRNA clusters are disclosed, Also disclosed are methods of use, compositions, cells, viral particles, and kits relating to the nucleic acid molecules disclosed herein. The disclosure provides, at least in part nucleic acid molecules such as shRNA clusters encoding shRNA-like molecules and artificial miRNA clusters encoding modified pri-miRNA-like molecules. The shRNA clusters and artificial miRNA clusters disclosed herein can be used, for example, to produce artificial RNA molecules, e.g., RNAi molecules. Cells, viral particles, compositions (e.g., pharmaceutical compositions), kits, and methods relating to the nucleic acid molecules, e.g., shRNA clusters and artificial miRNA clusters, are also disclosed. The nucleic acid molecules (e.g., shRNA clusters and artificial miRNA clusters), artificial RNA molecules (e.g., RNAi molecules), cells, viral particles, compositions (e.g.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: April 6, 2021
    Assignee: Texas Tech University System
    Inventors: Haoquan Wu, Jang-gi Choi
  • Patent number: 10947267
    Abstract: Disclosed is a system and method for Fmoc/tBu solution-phase peptide synthesis including the development of a new benzyl-type GAP protecting group, and related uses thereto. This novel GAP protecting group is utilized in place of a polymer support, facilitating C to N Fmoc peptide synthesis without chromatography, recrystallization, or polymer supports. The GAP group can be added and removed in high yield.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: March 16, 2021
    Assignee: Texas Tech University System
    Inventors: Guigen Li, Cole Seifert
  • Patent number: 10900946
    Abstract: An apparatus or method determines a salinity or metal content a liquid sample by scanning the liquid sample using a PXRF spectrometer, receiving a PXRF spectra from the PXRF spectrometer, baseline correcting and smoothing the received PXRF spectra, extracting a K? emission line of one or more elements from the baseline corrected and smoothed PXRF spectra using only one beam from the PXRF spectrometer, determining the salinity or the metal content of the liquid sample using the one or more processors and a predictive model that relates the K? emission line of the one or more elements to the salinity or the metal content of the liquid sample, and providing the salinity or the metal content of the liquid sample to the one or more input/output interfaces.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: January 26, 2021
    Assignee: Texas Tech University System
    Inventors: David Weindorf, Delaina Pearson, Somsubhra Chakraborty
  • Patent number: 10900947
    Abstract: An apparatus or method determines an elemental composition of a sample by scanning a sample using a PXRF spectrometer, receiving a PXRF spectra from the PXRF spectrometer, baseline correcting and smoothing the received PXRF spectra, extracting a K? emission line of one or more elements from the baseline corrected and smoothed PXRF spectra from the PXRF spectrometer, determining the elemental composition of the sample using a predictive model that relates the K? emission line of the one or more elements to the elemental composition of the sample, and providing the elemental composition of the sample to the one or more input/output interfaces.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: January 26, 2021
    Assignee: Texas Tech University System
    Inventors: David Weindorf, Delaina Pearson, Somsubhra Chakraborty
  • Publication number: 20210002730
    Abstract: A method of treating a cancer in a patient includes obtaining a sample from the patient, using a C-circle assay to detect a presence of an alternative lengthening of telomeres (ALT) phenotype in the sample, and administering an effect amount of at least one of PRIMA-1 or APR-246 to the patient.
    Type: Application
    Filed: March 9, 2019
    Publication date: January 7, 2021
    Applicant: Texas Tech University System
    Inventors: Charles Patrick Reynolds, Balakrishna Koneru, Shawn Macha
  • Patent number: 10883354
    Abstract: A system, method, and apparatus for separating liquid from gas in a horizontal well comprises a first tubing member comprising one of a screen-walled tube and a perforated tube, and a second tubing member configured inside the first tubing member, the second tubing member comprising a blank-walled tube section and one of a screen walled tube section and a perforated tube section, wherein the second tubing member has a smaller diameter than the first tubing member.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: January 5, 2021
    Assignee: Texas Tech University System
    Inventor: Marshall Watson