Patents Assigned to Texas Tech University System
  • Patent number: 11195968
    Abstract: A method for fabricating a neutron detector includes providing an epilayer wafer of Boron-10 enriched hexagonal boron nitride (h-10BN or h-BN or 10BN or BN) having a thickness (t), dicing or cutting the epilayer wafer into one or more BN strips having a width (W) and a length (L), and depositing a first metal contact on a first surface of at least one of the BN strip and a second metal contact on a second surface of the at least one BN strip. The neutron detector includes an electrically insulating submount, a BN epilayer of Boron-10 enriched hexagonal boron nitride (h-10BN or h-BN or 10BN or BN) placed on the insulating submount, a first metal contact deposited on a first surface of the BN epilayer, and a second metal contact deposited on a second surface of the BN epilayer.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: December 7, 2021
    Assignee: Texas Tech University System
    Inventors: Hongxing Jiang, Jingyu Lin, Jing Li, Avisek Maity, Sam Grenadier
  • Patent number: 11187692
    Abstract: An apparatus or method determines a content of the one or more elements of a solid matrix by scanning the solid matrix using a PXRF spectrometer and a color sensor, receiving a PXRF spectra from the PXRF spectrometer and a numerical color data from the color sensor, extracting a value for each of the one or more elements the PXRF spectra, determining the content of the one or more elements of the solid matrix using one or more processors and a predictive model that relates the value of each of the one or more elements and the numerical color data to the content of the one or more elements of the solid matrix, and providing the content of the one or more elements of the solid matrix to one or more input/output interfaces.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: November 30, 2021
    Assignee: Texas Tech University System
    Inventors: David Weindorf, Delaina Pearson, Somsubhra Chakraborty
  • Patent number: 11173262
    Abstract: The disclosure provides a way to supplement the tidal volume delivered to the patient by a leaking re-breather when the delivered volume becomes less than that set by the ventilator (in either pressure-regulated or volume modes). This may be accomplished with a shunt—a gas conduit joining the non-patient side of the re-breather to the patient side. A low-resistance, plenum or a draw-over vaporizer may also be incorporated into the gas pathway. Such a device may include a housing with a movable partition separating an actuating side from a patient side. The housing includes a ventilator orifice for pneumatic communication between a ventilator and the actuating side and a patient orifice for pneumatic communication between the patient side and a patient. A shunt defines a bypass flow path from the actuating side and to the patient side when the moveable partition is at a maximal displacement towards the patient side.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 16, 2021
    Assignee: Texas Tech University System
    Inventor: Bradley P. Fuhrman
  • Patent number: 11177021
    Abstract: The present invention includes a method for thermodynamic modeling of asphaltene precipitation comprising: calculating the Gibbs free energy for the transition between asphaltene molecules in solution into an imaginary crystalline asphaltene nanoaggregates or asphaltene nanocrystals; calculating the Gibbs free energy for the transition between asphaltene nanoaggregates or nanocrystals redissolving into colloidal asphaltene nanoaggregates using the computer: and predicting asphaltene solubility in a solvent, wherein the predicted asphaltene solubility is used to add a solvent to a liquid, semi-solid, or solid comprising asphaltenes to prevent, e.g., fouling of a wellbore, pipeline, downstream unit operations, to provide flow assurance for crude oil pipeline network, or for petroleum crude blending.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: November 16, 2021
    Assignee: Texas Tech University System
    Inventors: Chau-Chyun Chen, Yifan Hao, Meng Wang, Md Rashedul Islam
  • Patent number: 11169064
    Abstract: Disclosed is a system for determining fecundity of an embryo utilizing a non¬ invasive grading of early stage embryos (pre-hatching) based upon specific gravity, density and/or estimated weight. The system allows 100% recovery of embryos and can detect differences in growth potential at the earliest stages of development. The system may further enhance the development of embryos by utilization of microfluidic effects during use. The disclosed system supports a wide variety of scenarios for human and animal reproductive technologies and related products and services.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: November 9, 2021
    Assignee: Texas Tech University System
    Inventors: Samuel D. Prien, Lindsay L. Penrose
  • Patent number: 11143694
    Abstract: A system, method and apparatus for measuring carrier lifetime of a device comprises subjecting a test device to a voltage via a voltage source associated with the test system, disconnecting the test device from the voltage source, measuring the voltage as a function of time, measuring the current as a function of time, and determining a carrier lifetime of the test piece according to the slope of the measured voltage and the measured current.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: October 12, 2021
    Assignee: TEXAS TECH UNIVERSITY SYSTEM
    Inventors: Shelby Lacouture, Stephen Bayne
  • Publication number: 20210309607
    Abstract: Disclosed is a composition and method for a therapeutic treatment that is able to combat triple negative breast cancers (TNBCs). The class of urea compounds acts by blocking at inhibiting the mTOR signaling pathway, which, as a central regulator of mammalian metabolism and physiology that when inhibited leads to the induction of autophagocytosis. The disclosed compounds are further capable of reinitiating the p53 cycle as well as inhibition of the BNIP3/BNIP3L pathway. The disclosed compounds also shows the ability to cross the blood-brain-barrier where metastases can form. This new drug has the potential to be a powerful new treatment to combat invasive TNBCs.
    Type: Application
    Filed: August 9, 2019
    Publication date: October 7, 2021
    Applicant: Texas Tech University System
    Inventors: Nadezhda German, Ruwein Zhang, Wei Wang, Constantinos Mikelis, Luca Cucullo
  • Patent number: 11118564
    Abstract: Disclosed is a system and method for both consumer and utility scale energy extraction from flow-based energy sources. The passive system may utilize directing perforations on a surface in order to create and air jet vortex generators. Alternatively the system may provide for flow through discrete orifices aligned with the span of an aerodynamic assembly in a co-flow direction, utilizing a Coanda effect. Further additional configurations include directing flow through a perforated surface skin that is near the trailing edge on the suction side. Even further are embodiments for blowing air directly out of the trailing edge of an airfoil. The disclosed systems and methods support a wide variety of scenarios for fluid flow energy extraction, such as wind or water flow, as well as for related products and services.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: September 14, 2021
    Assignee: TEXAS TECH UNIVERSITY SYSTEM
    Inventor: Carsten Hein Westergaard
  • Publication number: 20210275082
    Abstract: The invention concerns a device (1) for testing sniffing of a pet, comprising a fixed casing (10) intended to be placed on the surface separately from the pet, a receptacle (2), which is rigidly attached in the first front opening (102) of the casing, an air flow sensor (3), an odor line (4), a calculator unit (6) for determination of a air flow derived databased on the air flow measured, a presence sensor (5) detecting the presence of the pet. The unit (6) is configured to command sending of the odorant stream (41) in the odor line (4) as a reaction to at least the fact that the presence sensor (5) has detected the presence of the pet.
    Type: Application
    Filed: June 28, 2019
    Publication date: September 9, 2021
    Applicants: SPECIALITES PET FOOD, TEXAS TECH UNIVERSITY SYSTEM
    Inventors: Nathaniel HALL, Franck PERON, Stéphanie CAMBOU
  • Patent number: 11092532
    Abstract: The present invention includes method and device for label-free holographic screening and enumeration of tumor cells in bulk flow comprising: a laser source, a micro-objective, a pinhole device and a collimating lens, a mirror, a sample chamber with a sample flow inlet on a first side of the sample chamber and a sample flow outlet connected by a microchannel, and a detector, wherein the collimated laser beam passes through microchannel and interacts with cells in the sample to generate a respective hologram at the detector, wherein a processor calculates a numerical reconstruction from the respective hologram and generates a focused image of the numerous cells using the numerical reconstruction, wherein the numerous cells are enumerated by looking at a size, a maximum intensity and a mean intensity of the focused image.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: August 17, 2021
    Assignee: Texas Tech University System
    Inventors: Dhananjay Kumar Singh, Caroline C. Ahrens, Wei Li, Siva A. Vanapalli
  • Patent number: 11091468
    Abstract: Compounds with anti-viral properties are provided that are based on the following structures: A variety of heteroaromatic groups have been found to be biologically active against the Zika (ZIKV) virus. In some embodiments, a dimeric compound is provided with each monomer linked by a repeating glycol linking group.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: August 17, 2021
    Assignees: Research Foundation of the City University of New York, Texas Tech University System
    Inventors: Adam B. Braunschweig, Kalanidhi Palanichamy, M. Fernando Bravo, Milan A. Shlain, Himanshu Garg, Anjali Joshi
  • Publication number: 20210238593
    Abstract: The present invention includes methods for detecting and reducing or inhibiting ischemic stroke in a mammal, the method comprising: (a) selecting microRNAs to downregulate selected from the group consisting of hsa-miR-96-5p, hsa-miR-99a-5p, hsa-miR-122-5p, hsa-miR-186-5p, hsa-miR-211-5p, hsa-mir-760, PC-3p-57664, orPC-5p-12969, (b) selecting microR-NAs to upregulate selected from the group consisting of ggo-miR-139, hsa-miR-30d-5p, hsa-miR-22-3p, hsa-miR-23a-3p, mmu-miR-5124a, mmu-mir-6240-5p, PC-3p-32463, or PC-5p-211, and combinations thereof, and (c) administering an agent that: downregulates that targets in (a), upregulates the targets in (b), or both, to the subject in an amount sufficient to reduce or inhibit ischemic stroke in the mammal. The present invention also includes the detection of the markers for use with stroke patients.
    Type: Application
    Filed: April 18, 2019
    Publication date: August 5, 2021
    Applicant: Texas Tech University System
    Inventors: P. Hemachandra REDDY, Murali VIJAYAN
  • Publication number: 20210222532
    Abstract: Methods for optimization of liquid oil production by huff-n-puff in shale reservoirs to achieve an improved (and optimal) oil recovery factor. The process determines and utilizes the optimum huff and puff times, number of cycles and soaking time under practical operation and reservoir conditions. The huff time in the process is a period so long that the pressure near the wellbore reaches the set maximum injection pressure during the huff period. The puff time in the process is the time required for the pressure near the wellbore to reach the set minimum production pressure during the puff period. Soaking is typically not necessary during the huff-n-puff gas injection in shale oil reservoirs. The number of huff-n-puff cycles is determinable by the time in which the economic rate cut-off is reached.
    Type: Application
    Filed: April 2, 2021
    Publication date: July 22, 2021
    Applicant: Texas Tech University System
    Inventor: James J. Sheng
  • Patent number: 11060995
    Abstract: The present invention provides for a device and method for the rapid detection (within seconds) of viruses and virions (proteins and nucleic acids) found in novel coronavirus (SARS-CoV-2), Human Immunodeficiency Virus (HIV), and other pandemic viruses. The device can be used at front line, hospitals, clinical laboratories, airports, groceries, homes, and the like. The device can be used as a single probe for single use or home use, or the device integrated into a carrousel or multiple probe magazine for fast detection of multiple samples simultaneously. This carrousel would facilitate multiple testing at times of pandemics when a large number of samples have to be tested in short periods of time.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: July 13, 2021
    Assignee: Texas Tech University System
    Inventors: Gerardine G. Botte, Ashwin Ramanujam
  • Publication number: 20210161496
    Abstract: Disclosed is a system and method for a system and method for an image processing-based approach has been developed for in vivo quantification of tissue and bodyfluid kinematics when certain human movements, physical loads and physiological stresses are experienced. Due to the absence of artificial or physical markers in those tissues or fluids during typical imaging (ultrasound, CT-scan or MRI), a virtual marker displacement and deformation scheme has been developed to measure movement and strain of both tissues and body fluids.
    Type: Application
    Filed: September 6, 2018
    Publication date: June 3, 2021
    Applicant: TEXAS TECH UNIVERSITY SYSTEM
    Inventors: Suhas Pol, Kerry K. Gilbert, Phillip S. Sizer, Richard Ellis
  • Patent number: 11007202
    Abstract: The present disclosure provides for pheromonal compositions and methods of using the compositions for stimulating early onset of estrus in a peri-pubertal suid and methods of improving performance of the peri-pubertal female suid. The composition may comprise at least one steroid hormone and a heterocyclic aromatic compound. The method comprises administering the pheromone composition to the suid for a period of time.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: May 18, 2021
    Assignee: TEXAS TECH UNIVERSITY SYSTEM
    Inventor: John J. McGlone
  • Patent number: 11008840
    Abstract: Methods for optimization of liquid oil production by huff-n-puff in shale reservoirs to achieve an improved (and optimal) oil recovery factor. The process determines and utilizes the optimum huff and puff times, number of cycles and soaking time under practical operation and reservoir conditions. The huff time in the process is a period so long that the pressure near the wellbore reaches the set maximum injection pressure during the huff period. The puff time in the process is the time required for the pressure near the wellbore to reach the set minimum production pressure during the puff period. Soaking is typically not necessary during the huff-n-puff gas injection in shale oil reservoirs. The number of huff-n-puff cycles is determinable by the time in which the economic rate cut-off is reached.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 18, 2021
    Assignee: Texas Tech University System
    Inventor: James J. Sheng
  • Publication number: 20210134536
    Abstract: High-frequency supercapacitors that can respond at kilohertz frequencies (AC-supercapacitors). The electrodes of the AC-supercapacitors include edge oriented graphene (EOG) electrodes or carbon nanofiber network (CNN) electrodes. The EOG electrodes are formed by utilizing a plasma and feedstock carbon gas to carbonize cellulous paper and deposit graphene implemented in one step. The CNN electrodes are formed by pyrolyzing a carbon nanofiber network utilizing a plasma.
    Type: Application
    Filed: November 3, 2020
    Publication date: May 6, 2021
    Applicant: Texas Tech University System
    Inventor: Zhaoyang Fan
  • Patent number: 10987367
    Abstract: The present invention includes a molecule, a method of identifying said molecule, and a method of using said molecule to inhibit the interaction of A? and Drp1 proteins. The molecules including diethyl (3,4-dihydroxyphenethylamine)(quinolin-4-yl)methylphosphonate (DDQ); [10-(4,5-dimethoxy2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl]triphenylphosphonium methanesulfonate (MitoQ); 3-Hydroxynaphthalene-2-carboxylic acid (3,4-dihydroxy-benzylidene)-hydrazide (Dynasore); and/or 3-(2,4Dichloro-5-methoxyphenyl)-2,3-dihydro-2-thioxo-4(1H)-quinazolinone/3-(2,4-Dichloro-5-methoxyphenyl)-2-sulfanyl-4(3H)-quinazolinone (Mdivi-1).
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: April 27, 2021
    Assignee: Texas Tech University System
    Inventors: Hemachandra Reddy, Chandra Sekhar Kurova
  • Publication number: 20210116435
    Abstract: Disclosed is a system and device for determining sex of an embryo utilizing a non-invasive grading of early stage embryos (pre-hatching) based upon specific gravity, density and/or estimated weight. The device comprises a drop chamber having a lumen, capable of assessing characteristics of at least one embryo while descending. The system allows 100% recovery of embryos. A processor is further capable of performing assessment of the embryos. The disclosed system supports a wide variety of scenarios for human and animal reproductive technologies and related products and services.
    Type: Application
    Filed: March 29, 2019
    Publication date: April 22, 2021
    Applicant: TEXAS TECH UNIVERSITY SYSTEM
    Inventors: Samuel D. Prien, Lindsay L. Penrose, Cara E. Wessels