Patents Assigned to Ultratech, Inc.
  • Publication number: 20060176917
    Abstract: Systems and methods for stabilizing a CO2 laser are disclosed. The system includes a detector unit for measuring the power in a select portion of the output beam. The detector unit generates an electrical signal corresponding to the measured power. The modulation frequency of the signal used to modulate the relatively high-frequency radio-frequency (RF) pump signal is filtered from the electrical signal. The filtered electrical signal is then compared to a desired value for the output power in the output beam. Based on the comparison, a modulation control signal for modulating the RF pump signal is formed. The modulation control signal has a varying duty cycle that varies the amount of laser pump power to reduce or eliminate the measured variations in the output beam power. The result is an output beam power that remains stable over time.
    Type: Application
    Filed: February 9, 2005
    Publication date: August 10, 2006
    Applicant: Ultratech, Inc.
    Inventors: Boris Grek, Michael Weitzel, Igor Landau
  • Patent number: 7049544
    Abstract: A beamsplitter apparatus for use with high-power radiation is disclosed. The apparatus includes a thermally conductive frame with a central aperture. The frame holds a window in the central aperture at the window's periphery. The window includes a diamond substrate with an optional coating formed thereon. Because the substrate is diamond and the frame is thermally conductive, the window is less susceptible to thermal effects caused by absorption of the incident radiation by the window. Thus, the original flatness of the widow surfaces is preserved, and variations in its index of refraction will be minimal. The result is that high-power radiation beams reflected from and transmitted by the widow remain substantially undistorted.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: May 23, 2006
    Assignee: Ultratech, Inc.
    Inventor: Igor Landau
  • Patent number: 6989515
    Abstract: An image stabilization apparatus and method for stabilizing the imaging of a high-performance optical system prone to imaging instabilities from thermal effects. Thermal instabilities within the lens, such as convection, can result in image placement errors in a high-performance optical system. The apparatus includes a heating element arranged on the upper surface of the optical system to provide heat to one or more gas-filled spaces in the optical system. An insulating blanket covers a portion of the optical system to uniformize the heating of the optical system and increase efficiency of the apparatus. The gas in the spaces is heated so that the warmer gases reside near the upper portion of the optical system, while the cooler gases reside near the lower portion of the optical system. This creates a stable thermal environment within the lens system, thereby stabilizing the imaging. Optionally gas can be flowed over the lower surface to keep heat from heating the lower portion of the optical system.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: January 24, 2006
    Assignee: Ultratech, Inc.
    Inventors: Michael A. Newcomb, Evan R. Mapoles, David P. Gaines, Steve Shannon
  • Patent number: 6898306
    Abstract: A method of measuring machine alignment offset of an optical machine having an alignment system, so that subsequent processing of substrates on set of optical machines can be performed in a machine-independent manner. The optical machine forms overlayed images of first and second patterns formed on either one or two reticles onto a substrate at respective first and second levels. The method of the invention includes forming a virtual zero-offset alignment pattern and a virtual zero-offset metrology pattern and imaging first and second metrology patterns on the substrate at the first and second levels, respectively. The second metrology pattern is aligned to the first metrology pattern using the zero-offset alignment pattern so that the exposures are performed in an overlayed manner. The first and second metrology patterns are based on the virtual zero-offset metrology pattern.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: May 24, 2005
    Assignee: Ultratech, Inc.
    Inventor: Shin-Yee Lu
  • Patent number: 6879383
    Abstract: An optical system for projection photolithography is disclosed. The optical system is a modified Dyson system capable of imaging a large field over a broad spectral range. The optical system includes a positive lens group having three elements: a plano-convex element and two negative meniscus elements. The lens group is arranged adjacent to but spaced apart from a concave mirror along the mirror axis. A projection photolithography system that employs the optical system is also disclosed.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: April 12, 2005
    Assignee: Ultratech, Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 6869155
    Abstract: A method and apparatus for masking a workpiece with a layer of ink from an inkjet head is disclosed. The masking prevents exposure of select regions of a photosensitive workpiece. The apparatus includes a workpiece pre-aligner for movably supporting and aligning the workpiece. The inkjet head is arranged to be in operable communication with the photosensitive layer of the workpiece when positioned on the pre-aligner and is adapted for providing a select mask of opaque ink on a photosensitive layer. Where the photosensitive layer is a negative tone photoresist, upon exposure the portion of the photosensitive layer that is not exposed because of the presence of the mask is removed upon developing. In this manner, select regions of the workpiece can be kept clear of photoresist or otherwise patterned with indicia such as alphanumeric symbols or barcodes.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: March 22, 2005
    Assignee: Ultratech, Inc.
    Inventor: Borislav Zlatanov
  • Patent number: 6863403
    Abstract: A 1X projection optical system for deep ultra-violet (DUV) photolithography is disclosed. The optical system is a modified Dyson system capable of imaging a relatively large field at high numerical apertures at DUV wavelengths. The optical system includes a lens group having first and second prisms and four lenses having a positive-negative-positive negative arrangement as arranged in order from the prisms toward the mirror. A projection photolithography system that employs the projection optical system of the invention is also disclosed.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: March 8, 2005
    Assignee: Ultratech, Inc.
    Inventors: Romeo I. Mercado, Shiyu Zhang
  • Patent number: 6844250
    Abstract: Methods and systems for performing laser thermal processing (LTP) of semiconductor devices are disclosed. The method includes forming a dielectric cap atop a temperature-sensitive element, and then forming an absorber layer atop the dielectric layer. A switch layer may optionally be formed atop the absorber layer. The dielectric cap thermally isolates the temperature-sensitive element from the absorber layer. This allows less-temperature-sensitive regions such as unactivated source and drain regions to be heated sufficiently to activate these regions during LTP via melting and recrystallization of the regions, while simultaneously preventing melting of the temperature-sensitive element, such as a poly-gate.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: January 18, 2005
    Assignee: Ultratech, Inc.
    Inventors: Yun Wang, Shaoyin Chen
  • Patent number: 6833908
    Abstract: Architecture and method to transfer data in generation, display or printing high edge placement accuracy images from multiple exposure of plurality of predefined patterns with lower edge placement accuracy. A pattern is laid out on a grid finer or different from grid size of image transducer pixel size, overlaid by transducer grid and converted to n patterns compatible with transducer grid. When combined by partial exposures weighting patterns unevenly, the n patterns generate an image with line edge positions a fraction (1/(2n−1)) of transducer grid size. For most picture display and step-and-repeat lithography applications, pattern stored in first memory is displayed or partially exposed once, and remaining patterns are displayed or partially exposed 2m−1 times m being copy number of the pattern. Superimposing 2n−1 exposures in human eye to scene integration time, picture with improved line placement accuracy is perceived.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: December 21, 2004
    Assignee: Ultratech, Inc.
    Inventor: David A. Markle
  • Patent number: 6825101
    Abstract: A method of this invention includes annealing at least one region of a substrate with a short pulse of particles. The particles can be electrons, protons, alpha particles, other atomic or molecular ions or neutral atoms and molecules. The substrate can be composed of a semiconductor material, for example. The particles can include dopant atoms such as p-type dopant atoms such as boron (B), aluminum (Al), gallium (Ga), or indium (In), and n-type dopant atomic species including arsenic (As), phosphorus (P), or antimony (Sb). The particles can also include silicon (Si) or germanium (Ge) atoms or ionized gas atoms including those of hydrogen (He), oxygen (O), nitrogen (N), neon (Ne), argon (Ar), or krypton (Kr). The particles can be used to anneal dopant atoms previously implanted into the substrate.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: November 30, 2004
    Assignee: Ultratech, Inc.
    Inventors: Andrew M. Hawryluk, David A. Markle, Somit Talwar
  • Patent number: 6813098
    Abstract: An optical system for projection photolithography is disclosed. The optical system is a modified Dyson system capable of imaging a large field over both a narrow and a broad spectral range. The optical system includes a positive lens group having a positive subgroup of elements that includes at least a plano-convex element and a negative subgroup that includes at least a negative meniscus element. The lens subgroups are separated by a small air space. The positive and negative subgroups constitute a main lens group arranged adjacent to but spaced apart from a concave mirror along the mirror axis. The system also includes a variable aperture stop so that the system has a variable NA. A projection photolithography system that employs the optical system is also disclosed.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: November 2, 2004
    Assignee: Ultratech, Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 6809888
    Abstract: Apparatus and methods for reducing optical distortion in an optical system by thermal means are disclosed. The apparatus includes a heating/cooling system spaced apart from and in thermal communication with an internally reflecting surface of a refractive element in the optical system. The heating/cooling system is adapted to create a select temperature distribution in the refractive optical element near the internally reflecting surface to alter the refractive index and/or the surface profile in a manner that reduces residual distortion.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: October 26, 2004
    Assignee: Ultratech, Inc.
    Inventor: David A. Markle