Patents Assigned to Ultratech, Inc.
  • Publication number: 20130105971
    Abstract: Structure and methods of making the structures. The structures include a structure, comprising: an organic dielectric passivation layer extending over a substrate; an electrically conductive current spreading pad on a top surface of the organic dielectric passivation layer; an electrically conductive solder bump pad comprising one or more layers on a top surface of the current spreading pad; and an electrically conductive solder bump containing tin, the solder bump on a top surface of the solder bump pad, the current spreading pad comprising one or more layers, at least one of the one or more layers consisting of a material that will not form an intermetallic with tin or at least one of the one or more layers is a material that is a diffusion barrier to tin and adjacent to the solder bump pad.
    Type: Application
    Filed: December 20, 2012
    Publication date: May 2, 2013
    Applicant: ULTRATECH, INC.
    Inventor: Ultratech, Inc.
  • Patent number: 8399808
    Abstract: Systems and methods for forming a time-average line image are disclosed. The method includes forming a line image with a first amount of intensity non-uniformity. The method also includes forming and scanning a secondary image over at least a portion of the line image to form a time-averaged modified line image having a second amount of intensity non-uniformity that is less than the first amount. Wafer emissivity is measured in real time to control the intensity of the secondary image. Temperature is also measured in real time based on the wafer emissivity and reflectivity of the secondary image, and can be used to control the intensity of the secondary image.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 19, 2013
    Assignee: Ultratech, Inc.
    Inventors: Serguei Anikitchev, James T. McWhirter, Joseph E. Gortych
  • Patent number: 8337735
    Abstract: Solder mold plates and methods of manufacturing the solder mold plates are provided herein. The solder mold plates are used in controlled collapse chip connection processes. The solder mold plate includes a plurality of cavities. At least one cavity of the plurality of cavities has a different volume than another of the cavities in a particular chip set site. The method of manufacturing the solder mold plate includes determining susceptible white bump locations on a chip set. The method further includes forming lower volume cavities on the solder mold plate which coincide with the susceptible white bump locations, and forming higher volume cavities on the solder mold plate which coincide with less susceptible white bump locations.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: December 25, 2012
    Assignee: Ultratech, Inc.
    Inventor: Lewis S Goldmann
  • Patent number: 8338947
    Abstract: Structure and methods of making the structures. The structures include a structure, comprising: an organic dielectric passivation layer extending over a substrate; an electrically conductive current spreading pad on a top surface of the organic dielectric passivation layer; an electrically conductive solder bump pad comprising one or more layers on a top surface of the current spreading pad; and an electrically conductive solder bump containing tin, the solder bump on a top surface of the solder bump pad, the current spreading pad comprising one or more layers, at least one of the one or more layers consisting of a material that will not form an intermetallic with tin or at least one of the one or more layers is a material that is a diffusion barrier to tin and adjacent to the solder bump pad.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: December 25, 2012
    Assignee: Ultratech, Inc.
    Inventors: Timothy H. Daubenspeck, Timothy D. Sullivan
  • Patent number: 8323857
    Abstract: A phase-shift mask having a checkerboard array and a surrounding sub-resolution assist phase pattern. The checkerboard array comprises alternating phase-shift regions R that have a relative phase difference of 180 degrees. The sub-resolution assist phase regions R? reside adjacent corresponding phase-shift regions R and have a relative phase difference of 180 degrees thereto. The sub-resolution assist phase regions R? are configured to mitigate undesirable edge effects when photolithographically forming photoresist features. Method of forming LEDs using the phase-shift mask are also disclosed.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: December 4, 2012
    Assignee: Ultratech, Inc.
    Inventors: Robert L. Hsieh, Warren W. Flack
  • Patent number: 8314360
    Abstract: Apparatuses and methods are provided for processing a substrate having an upper surface that includes a central region, a peripheral region, and an edge adjacent to the peripheral region. An image having an intensity sufficient to effect thermal processing of the substrate is scanned across the upper surface of the substrate. The image scanning geometry allows processing the central region of the substrate at a substantially uniform temperature without damaging the outer edge. In some instances, the image may be formed from a beam traveling over at least a portion of the central region so that no portion thereof directly illuminates any portion of the edge when the image is scanned across the periphery region. The substrate may be rotated 180° or the beam direction may be switched after part of the scanning operation has been completed.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: November 20, 2012
    Assignee: Ultratech, Inc.
    Inventors: Boris Grek, David A. Markle
  • Patent number: 8314500
    Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting metallurgy including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: November 20, 2012
    Assignee: Ultratech, Inc.
    Inventors: Luc Belanger, Stephen L. Buchwalter, Leena Paivikki Buchwalter, Ajay P. Giri, Jonathan H. Griffith, Donald W. Henderson, Sung Kwon Kang, Eric H. Laine, Christian Lavoie, Paul A. Lauro, Valérie Anne Oberson, Da-Yuan Shih, Kamalesh K Srivastava, Michael J. Sullivan
  • Patent number: 8309474
    Abstract: Systems and methods for performing ultrafast laser annealing in a manner that reduces pattern density effects in integrated circuit manufacturing are disclosed. The method includes scanning at least one first laser beam over the patterned surface of a substrate. The at least one first laser beam is configured to heat the patterned surface to a non-melt temperature Tnonmelt that is within about 400° C. of the melt temperature Tmelt. The method also includes scanning at least one second laser beam over the patterned surface and relative to the first laser beam. The at least one second laser beam is pulsed and is configured to heat the patterned surface from the non-melt temperature provided by the at least one first laser beam up to the melt temperature.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: November 13, 2012
    Assignee: Ultratech, Inc.
    Inventors: Yun Wang, Andrew M. Hawryluk
  • Patent number: 8299446
    Abstract: Sub-field enhanced global alignment (SEGA) methods for aligning reconstituted wafers in a lithography process are disclosed. The SEGA methods provide the ability to accommodate chip placement errors for chips supported by a reconstituted wafer when performing a lithographic process having an overlay requirement. The SEGA methods include measuring chip locations to determine sub-fields of the reconstituted wafer over which enhanced global alignment (EGA) can be performed on the chips therein to within the overlay requirement. The SEGA methods further included individually performing EGA over the respective sub-fields. The SEGA methods take advantage of the benefits of both EGA and site-by-site alignment and are particularly applicable to wafer-level packing lithographic processes such as fan-out wafer-level packaging.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: October 30, 2012
    Assignee: Ultratech, Inc.
    Inventors: Andrew M. Hawryluk, Emily True, Manish Ranjan, Warren Flack, Detlef Fuchs
  • Publication number: 20120223062
    Abstract: Apparatuses and methods are provided for processing a surface of a substrate. The substrate may have a surface pattern that exhibits directionally and/or orientationally different reflectivities relative to radiation of a selected wavelength and polarization. The apparatus may include a radiation source that emits a photonic beam of the selected wavelength and polarization directed toward the surface at orientation angle and incidence angle selected to substantially minimize substrate surface reflectivity variations and/or minimize the maximum substrate surface reflectivity during scanning. Also provided are methods and apparatuses for selecting an optimal orientation and/or incidence angle for processing a surface of a substrate.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 6, 2012
    Applicant: Ultratech, Inc.
    Inventor: Andrew M. Hawryluk
  • Publication number: 20120111838
    Abstract: Provided are apparatuses and method for the thermal processing of a substrate surface, e.g., controlled laser thermal annealing (LTA) of substrates. The invention typically involves irradiating the substrate surface with first and second images to process regions of the substrate surface at a substantially uniform peak processing temperature along a scan path. A first image may serve to effect spike annealing of the substrates while another may be used to provide auxiliary heat treatment to the substrates before and/or after the spike annealing. Control over the temperature profile of the prespike and/or postspike may also reduce stresses and strains generated in the wafers. Also provided are microelectronic devices formed using the inventive apparatuses and methods.
    Type: Application
    Filed: January 10, 2012
    Publication date: May 10, 2012
    Applicant: Ultratech, Inc.
    Inventors: Arthur W. Zafiropoulo, Andrew M. Hawryluk, James T. McWhirter, Serguei G. Anikitchev
  • Patent number: 8153930
    Abstract: Methods and apparatuses are provided for improving the intensity profile of a beam image used to process a semiconductor substrate. At least one photonic beam may be generated and manipulated to form an image having an intensity profile with an extended uniform region useful for thermally processing the surface of the substrate. The image may be scanned across the surface to heat at least a portion of the substrate surface to achieve a desired temperature within a predetermined dwell time. Such processing may achieve a high efficiency due to the large proportion of energy contained in the uniform portion of the beam.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: April 10, 2012
    Assignee: Ultratech, Inc.
    Inventors: Andrew M Hawryluk, Boris Grek, David A Markle
  • Publication number: 20120071007
    Abstract: Provided are systems and methods for processing the surface of substrates that scan a laser beam at one or more selected orientation angles. The orientation angle or angles may be selected to reduce substrate warpage. When the substrates are semiconductor wafers having microelectronic devices, the orientation angles may be selected to produce controlled strain and to improve electronic performance of the devices.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 22, 2012
    Applicant: Ultratech, Inc.
    Inventors: Yun Wang, Shaoyin Chen
  • Patent number: 8088633
    Abstract: A method of aligning a wafer when lithographically fabricating a light-emitting diode (LED). The method includes forming on the wafer at least one roughened alignment mark having a root-mean-square (RMS) surface roughness ?S. The roughened alignment mark is formed as a consequence of forming a plasma etch to roughen a LED surface on which the wafer alignment mark resides. The method also includes imaging the at least one roughened wafer alignment mark with alignment light having a wavelength ?A that is in the range from about 2?S to about 8?S. The method also includes comparing the detected image to an alignment reference to establish wafer alignment. Once wafer alignment is established, p-contacts and n-contacts can be formed on the LED upper surface in their proper locations.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: January 3, 2012
    Assignee: Ultratech, Inc.
    Inventors: Robert L. Hsieh, Khiem Nguyen, Warren W. Flack, Andrew M. Hawryluk
  • Publication number: 20110298093
    Abstract: Provided are apparatuses and method for the thermal processing of a substrate surface, e.g., controlled laser thermal annealing (LTA) of substrates. The invention typically involves irradiating the substrate surface with first and second images to process regions of the substrate surface at a substantially uniform peak processing temperature along a scan path. A first image may serve to effect spike annealing of the substrates while another may be used to provide auxiliary heat treatment to the substrates before and/or after the spike annealing. Control over the temperature profile of the prespike and/or postspike may also reduce stresses and strains generated in the wafers. Also provided are microelectronic devices formed using the inventive apparatuses and methods.
    Type: Application
    Filed: August 15, 2011
    Publication date: December 8, 2011
    Applicant: ULTRATECH, INC.
    Inventors: Arthur W. Zafiropoulo, Andrew M. Hawryluk, James T. McWhirter, Serguei G. Anikitchev
  • Patent number: 8071908
    Abstract: Apparatuses and methods are provide thermally processing of the central portion of a substrate surface using a scanned photonic beam. Such thermal processing is carried out using a shield to block the beam from illuminating the side wall or peripheral portion of the substrate. The shield has characteristics, e.g., diffractive characteristics, effective to maintain the intensity of any unblocked portion of beam suitable for processing the central portion of the substrate surface.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: December 6, 2011
    Assignee: Ultratech, Inc.
    Inventor: Serguei G. Anikitchev
  • Patent number: 8067305
    Abstract: Provided are methods for forming an electrically conductive structure of a desired three-dimensional shape on a substantially planar surface of a substrate, e.g., a semiconductor wafer. Typically, the particulate matter is deposited in a layer-by-layer manner and adhered to selected regions on the substrate surface. The particulate matter may be deposited to produce a mold for forming the structure and/or to produce the structure itself. A three-dimensional printer with associated electronic data may be used without the need of a lithographic mask or reticle.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: November 29, 2011
    Assignee: Ultratech, Inc.
    Inventors: Arthur W. Zafiropoulo, Andrew M. Hawryluk
  • Publication number: 20110249071
    Abstract: Apparatuses and methods are provided for processing a substrate having an upper surface that includes a central region, a peripheral region, and an edge adjacent to the peripheral region. An image having an intensity sufficient to effect thermal processing of the substrate is scanned across the upper surface of the substrate. The image scanning geometry allows processing the central region of the substrate at a substantially uniform temperature without damaging the outer edge. In some instances, the image may be formed from a beam traveling over at least a portion of the central region so that no portion thereof directly illuminates any portion of the edge when the image is scanned across the periphery region. The substrate may be rotated 180° or the beam direction may be switched after part of the scanning operation has been completed.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 13, 2011
    Applicant: ULTRATECH, INC.
    Inventors: Boris Grek, David A. Markle
  • Patent number: 8026519
    Abstract: Systems and methods for forming a time-averaged line image having a relatively high amount of intensity uniformity along its length is disclosed. The method includes forming at an image plane a line image having a first amount of intensity non-uniformity in a long-axis direction and forming a secondary image that at least partially overlaps the primary image. The method also includes scanning the secondary image over at least a portion of the primary image and in the long-axis direction according to a scan profile to form a time-average modified line image having a second amount of intensity non-uniformity in the long-axis direction that is less than the first amount. For laser annealing a semiconductor wafer, the amount of line-image overlap for adjacent scans of a wafer scan path is substantially reduced, thereby increasing wafer throughput.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: September 27, 2011
    Assignee: Ultratech, Inc.
    Inventors: Serguei Anikitchev, James T. McWhirter, Joseph E. Gortych
  • Patent number: RE44116
    Abstract: Methods and apparatuses are provided for positioning a substrate having a target that may be located on either the front-side or the backside of the substrate. The optical detector that views the target contains a signal-generating material that is substantially identical to the substrate material.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: April 2, 2013
    Assignee: Ultratech, Inc.
    Inventors: Emily True, Ray Ellis, Shiyu Zhang