Patents Assigned to University of Texas Systems
  • Publication number: 20240009223
    Abstract: The present disclosure provide for methods of using 6-thio-2?-deoxyguanosine (6-thio-dG) to treat telomerase-positive cancers that exhibit (a) one or more TERT promoter mutations, and/or (b) enriched telomere transcriptional signature(s). In particular, melanomas, including those who are not sensitive or have become resistant to immune checkpoint inhibition and/or MAPKi therapy are targets for this therapy.
    Type: Application
    Filed: June 5, 2023
    Publication date: January 11, 2024
    Applicants: The Board of Regents of The University of Texas System, The Wistar Institute of Anatomy and Biology
    Inventors: Jerry W. SHAY, Gao ZHANG
  • Publication number: 20240009240
    Abstract: This disclosure provides for engineered T cell Receptors (TCRs), cells comprising the TCRs, and methods of making and using the TCRs. The current disclosure relates to TCRs that specifically recognize EGFR neoantigens comprising L858R mutations and restricted to HLA class I A11 allotype. Accordingly, aspects of the disclosure relate to a polypeptide comprising an antigen binding variable region comprising the amino acid sequence of a CDR3 of the disclosure or an amino acid sequence with at least 80% sequence identity to a CDR3 of the disclosure.
    Type: Application
    Filed: November 4, 2021
    Publication date: January 11, 2024
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Patrick HWU, Fenge LI, Gregory LIZEE
  • Publication number: 20240013925
    Abstract: A method can include receiving, at a computer system, characteristic values of a pregnancy of a subject. As an example, the characteristic values can include a numerical value for a live birth order of the pregnancy for the subject. The computer system can store a machine learning model that receives a first set of input features and provides a second set of one or more output values. In some embodiments, the first set of input features can correspond to the characteristic values of the pregnancy of the subject. The second set of one or more output values can include a probability of a Cesarean delivery. The characteristic values can be input into the machine learning model to obtain the probability of the Cesarean delivery being required for the subject during an attempt of a vaginal delivery. The Cesarean delivery can be performed based on the probability.
    Type: Application
    Filed: November 4, 2021
    Publication date: January 11, 2024
    Applicant: Board of Regents, The University of Texas System
    Inventors: Radek Bukowski, Karl Schulz
  • Publication number: 20240009241
    Abstract: This disclosure provides for engineered T cell Receptors (TCRs), cells comprising the TCRs, and methods of making and using the TCRs. The current disclosure relates to TCRs that specifically recognize EGFR neoantigens comprising L858R mutations and restricted to HLA class I A31 and A33 allotypes. Accordingly, aspects of the disclosure relate to a polypeptide comprising an antigen binding variable region comprising the amino acid sequence of a CDR3 of the disclosure or an amino acid sequence with at least 80% sequence identity to a CDR3 of the disclosure.
    Type: Application
    Filed: November 4, 2021
    Publication date: January 11, 2024
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Patrick HWU, Cassian YEE, Geogory LIZEE
  • Publication number: 20240010614
    Abstract: Modular dendrimers with cationic groups and lipophilic groups are provided herein. In some aspects, the dendrimers provided herein may be formulated in compositions which contain a nucleic acid and one or more helper excipients. In some aspects, these compositions may also be used to treat diseases or disorders with a therapeutic nucleic acid.
    Type: Application
    Filed: June 15, 2023
    Publication date: January 11, 2024
    Applicant: The Board of Regents of The University of Texas System
    Inventors: Daniel J. SIEGWART, Kejin ZHOU
  • Publication number: 20240011103
    Abstract: Provided herein are methods for determining a subtype of a small cell lung cancer in a patient based on the express status of ASCL1, NEUROD1, and POU2F3, which are expressed in a mutually exclusive fashion. The subtype of the cancer can be used to determine the sensitivity of the cancer to certain anti-cancer therapies. As such, also provided are methods of treating patients having small cell lung cancer based on the subtyping results.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 11, 2024
    Applicant: Board of Regents, The University of Texas System
    Inventors: Carl M. GAY, Lauren A. BYERS, John V. HEYMACH
  • Patent number: 11866785
    Abstract: Methods are provided for identifying tumor-specific antibodies and/or T-cell receptors by paired mRNA sequencing from individual immune cells in sentinel lymph nodes and comparison of these sequences with corresponding mass spectroscopy data from a subject having a cancer. Novel tumor-specific antibodies (e.g., NY-ESO-1-binding antibodies) are also provided.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 9, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventors: Gregory C. Ippolito, Jonathan R. Mcdaniel, William N. Voss, George Georgiou
  • Patent number: 11865285
    Abstract: In one embodiment, a system for evacuating subdural hematomas includes an inlet configured to be placed in fluid communication with a subdural space, an irrigation reservoir in fluid communication with the inlet and configured to supply irrigation fluid to the inlet and the subdural space, an outlet separate from the inlet and also configured to be placed in fluid communication with the subdural space, and a pump in fluid communication with the outlet and configured to create negative pressure within the subdural space and evacuate fluid from the subdural space.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: January 9, 2024
    Assignee: The Board of Regents, The University of Texas System
    Inventor: Alexander Papanastassiou
  • Patent number: 11865362
    Abstract: A method for determining a radiotherapy treatment plan can include: receiving anatomical data for a patient; generating, via a neural network analyzing the anatomical data, a plurality of fitness values for a plurality of candidate beam orientations; determining a selected beam orientation based on the plurality of fitness values; performing a fluence map optimization (FMO) process on the selected beam orientation; and determining a dose distribution for the patient based on the FMO process.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: January 9, 2024
    Assignee: The Board of Regents of University of Texas System
    Inventors: Dan Nguyen, Azar Sadeghnejad Barkousaraie, Steve Jiang
  • Patent number: 11865157
    Abstract: Described herein are pharmaceutical compositions containing peptoids of general formula (I), (II), or (III) capable of reducing proliferation of cancer stem cells in a subject and methods of treatment or prophylactic administration of these pharmaceutical compositions to treat cancer. Also provided herein are method of detecting and treating cancerous cell masses by use of peptoids of general formula (I), (II), or (III).
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: January 9, 2024
    Assignees: University of Houston System, The Board of Regents of the University of Texas System
    Inventors: Damith Gomika Udugamasooriya, Aaron Raymond, John Minna
  • Patent number: 11866708
    Abstract: The disclosure provides for eRNA-targeted transcriptional reprogramming through targeted reduction of eRNAs for a clinically relevant gene, TNFSF10, resulting in a selective control of interferon-induced apoptosis. A method of inhibiting a TNFSF10 gene expression in a human cell is disclosed. The methods described herein comprise contacting the human cell with a single-stranded antisense compound consisting of the sequence selected from a set of SEQ ID NOs: disclosed herein, wherein the antisense compound targets an enhancer RNA (eRNA) transcribed from a genomic enhancer sequence or region. The eRNA is an TNFSF10 eRNA sequence comprising the nucleic acid sequence selected from the SEQ ID NOs disclosed herein which inhibits expression of the TNFSF10 gene in the human cell.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: January 9, 2024
    Assignee: Board of Regents, The University of Texas System
    Inventor: Tae Hoon Kim
  • Patent number: 11864911
    Abstract: Methods, apparatuses, systems, and implementations for inductive heating of a foreign metallic implant are disclosed. A foreign metallic implant may be heated via AMF pulses to ensure that the surface of the foreign metallic implant heats in a uniform manner. As the surface temperature of the foreign metallic implant rises, acoustic signatures may be detected by acoustic sensors that may indicate that tissue may be heating to an undesirable level approaching a boiling point. Once these acoustic signatures are detected, the AMF pulses may be shut off for a time period to allow the surface temperature of the implant to cool before applying additional AMF pulses. In this manner, the surface temperature of a foreign metallic implant may be uniformly heated to a temperature adequate to treat bacterial biofilm buildup on the surface of the foreign metallic implant without damaging surrounding tissue.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: January 9, 2024
    Assignee: The Board Of Regents Of The University Of Texas System
    Inventors: Rajiv Chopra, David Greenberg, Yonatan Chatzinoff
  • Publication number: 20240005506
    Abstract: Some methods of analyzing one or more brain lesions of a patient comprise, for each of the lesion(s), calculating one or more lesion characteristics from a first 3-dimensional (3D) representation of the lesion obtained from data taken at a first time and a second 3D representation of the lesion obtained from data taken at a second time that is after the first time. The characteristic(s) can include a change, form the first time to the second time, in the lesion's volume and/or surface area, the lesion's displacement from the first time to the second time, and/or the lesion's theoretical radius ratio at each of the first and second times. Some methods comprise characterizing whether the patient has multiple sclerosis and/or the progression of multiple sclerosis in the patient based at least in part on the calculation of the lesion characteristic(s) of each of the lesion(s).
    Type: Application
    Filed: July 17, 2023
    Publication date: January 4, 2024
    Applicant: The Board of Regents of the University of Texas System
    Inventor: Darin T. Okuda
  • Publication number: 20240002925
    Abstract: Provided herein are compositions, systems, methods, and kits for peptide analysis, including peptide sequencing. Aspects of the present disclosure provide bifunctional reagents which may selectively couple to amino acids and selectively couple to detectable species. Aspects of the present disclosure further provide methods for using these bifunctional reagents to sequence and analyze peptides.
    Type: Application
    Filed: November 18, 2022
    Publication date: January 4, 2024
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Eric V. ANSLYN, Edward MARCOTTE, Cecil J. HOWARD, II, Jagannath SWAMINATHAN, Angela M. BARDO, Brendan FLOYD, Brandon HOSFORD, Le ZHANG, Emily Faith BABCOCK, Caroline M. HINSON
  • Publication number: 20240002849
    Abstract: Described are compounds and methods useful in the treatment of Fuchs' Endothelial Corneal Dystrophy (FECD).
    Type: Application
    Filed: November 8, 2022
    Publication date: January 4, 2024
    Applicants: The Board of Regents of The University of Texas System, University of Massachusetts
    Inventors: Venkateswara V. MOOTHA, David R. COREY, Jiaxin HU, Jonathan K. WATTS
  • Publication number: 20240002528
    Abstract: Provided herein are compositions, methods and kits for targeting Cystinosin protein. These compositions, methods and kits may be used for detecting and quantifying Cystinosin in clinical and non-clinical samples.
    Type: Application
    Filed: June 23, 2023
    Publication date: January 4, 2024
    Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Philip Schmiege, Linda Donnelly, Xiaochun Li
  • Patent number: 11858956
    Abstract: The present disclosure is concerned with 6-aza-nucleoside prodrugs that are capable of inhibiting a viral infection and methods of treating viral infections such as, for example, human immunodeficiency virus (HIV), human papillomavirus (HPV), chicken pox, infectious mononucleosis, mumps, measles, rubella, shingles, ebola, viral gastroenteritis, viral hepatitis, viral meningitis, human metapneumovirus, human parainfluenza virus type 1, parainfluenza virus type 2, parainfluenza virus type 3, respiratory syncytial virus, viral pneumonia, yellow fever virus, tick-borne encephalitis virus, Chikungunya virus (CHIKV), Venezuelan equine encephalitis (VEEV), Eastern equine encephalitis (EEEV), Western equine encephalitis (WEEV), dengue (DENV), influenza, West Nile virus (WNV), zika (ZIKV), Middle East Respiratory Syndromes (MERS), Severe Acute Respiratory Syndrome (SARS), and coronavirus disease 2019 (COVID-19), using these compounds.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: January 2, 2024
    Assignees: Southern Research Institute, Oregon Health & Science University, Washington University in St. Louis, Board of Regents, The University of Texas System
    Inventors: Omar Moukha-Chafiq, Ashish Kumar Pathak, Shuklendu D. Karyakarte, Larry D. Bratton, Corinne E. Augelli-Szafran, Michael Diamond, Pei Yong Shi, Alec Jay Hirsch, Jessica Lee Smith, Daniel Streblow, Nicole Haese, Baoling Ying
  • Patent number: 11860118
    Abstract: A biosensing system configured to detect a target DNA and methods of detecting a target DNS are presented. The biosensing system comprises a biosensor comprising a suspension of a hybridization buffer containing dispersed gold nanoparticles, sodium chloride, and single-stranded DNA probes configured to undergo DNA hybridization with the target DNA.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: January 2, 2024
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: XiuJun Li, Wan Zhou
  • Patent number: 11858517
    Abstract: Embodiments of the present systems and methods may provide techniques that provide dynamic groups and attribute-based access control (ABAC) model (referred as CV-ABACG) to secure communication, data exchange and resource access in smart vehicles ecosystems. In embodiments, the model not only considers system wide attributes-based security policies, but also takes into account individual user privacy preferences for allowing or denying service notifications, alerts, and operations to on-board resources. Embodiments of the present systems and methods may provide groups in vehicular IoT, which may be dynamically assigned to moving entities like connected cars, based on their current GPS coordinates, speed or other attributes, to ensure relevance of location and time sensitive notification services, to provide administrative benefits to manage large numbers of entities, and to enable attributes inheritance for fine-grained authorization policies.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: January 2, 2024
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Maanak Gupta, James Benson, Farhan Patwa, Ravinderpal Sandhu
  • Patent number: 11858884
    Abstract: Disclosed herein are methods for modulating an amount or activity of a gene or a gene product in a cell. The methods herein may comprise contacting a cell with a therapeutic agent assembled with a lipid composition, which lipid composition may comprise a dendrimer or dendron which may comprise one or more degradable diacyl group, in which may result in modulating the amount or activity of the gene or the gene product in the cell. The therapeutic agent modulating a gene or gene product in a cell may be sufficient to treat a disease or disorder in a subject. Further disclosed herein are pharmaceutical compositions, kits, and lipid compositions for modulating an amount or activity of a gene or a gene product in a cell.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: January 2, 2024
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Daniel J. Siegwart, Kejin Zhou