Patents Assigned to University of Utah
  • Patent number: 10724081
    Abstract: Methods and containers are provided for identifying a species, illustratively a bacterial species. Illustrative methods comprise amplifying various genes in the nucleic acid from the bacterial species in a single reaction mixture using pairs of outer first-stage primers designed to hybridize to generally conserved regions of the respective genes to generate a plurality of first-stage amplicons, dividing the reaction mixture into a plurality of second-stage reactions, each using a unique pair of second-stage primers, each pair of second-stage primers specific for a target bacterial species or subset of bacterial species, detecting which of the second-stage reactions amplified, and identifying the bacterial species based on second-stage amplification.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: July 28, 2020
    Assignees: BioFire Diagnostics, LLC, University of Utah Research Foundation
    Inventors: Mark Aaron Poritz, Anne Jeannette Blaschke-Bonkowsky
  • Patent number: 10709373
    Abstract: A fluid analysis device including a fluid receipt chamber, a first capacitive element for measuring fluid flow into the fluid receipt chamber and a controller operatively coupled to the first capacitive element, wherein the controller is configured to measure a first capacitance of the first capacitive element.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: July 14, 2020
    Assignee: University of Utah Research Foundation
    Inventors: James M. Hotaling, Randy C. Bowen, Alvin Y. Le, Matthew I. Converse, Andrew W. Southwick, Tab S. Robbins, Kent Ogden, Scott McClellan, Brian Holt
  • Patent number: 10705047
    Abstract: Functionalized nanotube arrays, sensors, and related methods of detecting target compounds are presented. A functionalized nanotube array can include a plurality of metal oxide nanotubes. The metal oxide nanotubes can be formed of a metal oxide and can have an interior or exterior surface that is optionally functionalized with at least one metal ion. These metal nanotubes can be used in a sensor for detecting target compounds such as volatile organic compounds, and biomarkers in a fluid environment. The sensor can further include a power source configured to apply a voltage to the nanotube array and a current sensor configured to monitor and detect changes in a response current which varies upon binding with the target compounds.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: July 7, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Swomitra Kumar Mohanty, Manoranjan Misra, Younghwan Kim, Jules Magda
  • Patent number: 10690684
    Abstract: A system for measuring the blood loss comprises a measuring device that determines the hemoglobin concentration of fluid within a container utilizing a light source and a light detector. The container receives blood and other fluids from a patient during a medical procedure. Light from the light source is passed through the blood and other fluids in the container and is detected by the light detector. Based upon a magnitude of light detected, the hemoglobin concentration of the fluid in the container can be determined. A volume-measuring device determines the volume of blood and fluid in the container. Knowing the hemoglobin concentration and volume of fluid in the container, the volume of patient blood loss in the container can be determined. The blood loss measuring device in combination with infusion systems maintains a real-blood volume status so that proper infusion of blood, crystalloid and/or colloid solutions occurs.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 23, 2020
    Assignees: Majelco Medical, Inc., University of Utah Research Foundation
    Inventors: Annette Macintyre, Lara Brewer Cates, Suzanne Wendelken, Quinn Tate, Soeren Hoehne, Alfred Akerman, Stephen W. Allison, Matthew B. Scudiere, Michael R. Cates, David L. Beshears, Adan James Akerman
  • Patent number: 10689730
    Abstract: A method (500) for producing a titanium product is disclosed. The method (500) can include obtaining TiO2-slag (501) and reducing impurities in the TiO2-slag (502) to form purified TiO2 (503). The method (500) can also include reducing the purified TiO2 using a metallic reducing agent (504) to form a hydrogenated titanium product comprising TiH2 (505). The hydrogenated titanium product can be dehydrogenated (506) to form a titanium product (508). The titanium product can also be optionally deoxygenated (507) to reduce oxygen content.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: June 23, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Zhigang Zak Fang, Ying Zhang, Yang Xia, Pei Sun
  • Patent number: 10689376
    Abstract: Substituted-3H-imidazo[4,5-c]pyridine and 1H-pyrrolo[2,3-c]pyridine series of novel Ectonucleotide Pyrophosphatase/Phosphodiesterase-1 (ENPP1) and related compounds, which are useful as inhibitors of ENPP1; synthetic methods for making the compounds; pharmaceutical compositions comprising the compounds; and methods of using the compounds and compositions to treat disorders associated with dysfunction of the ENPP1.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: June 23, 2020
    Assignees: Stingray Therapeutics, Inc., The University of Utah
    Inventors: Hariprasad Vankayalapati, Xiaohui Liu, Gurusankar Ramamoorthy, Sunil Sharma, Mohan Rao Kaadige, Alexis Weston, Trason Thode
  • Patent number: 10667816
    Abstract: Implementations of the present disclosure relate to apparatuses, systems, and methods for anastomosing vascular systems in medical procedures. A pair of similar or identical coupling devices may be disposed at the ends of two vessels, either natural or synthetic. The coupling devices may be capable of hermaphroditically connecting to one another to provide a simple and secure connection which promotes growth of the vessels between the bio-absorbable coupling devices.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 2, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Jayant P. Agarwal, Bruce K. Gale, Huizhong Li, Himanshu J. Sant
  • Patent number: 10653813
    Abstract: Described herein is the synthesis of reinforced adhesive complex coacervates and their use thereof. The reinforced adhesive complex coacervates are composed of (a) at least one polycation, (b) at least one polyanion, and (c) a reinforcing component. The adhesive complex coacervates described herein can be subsequently cured to produce strong, cohesive adhesives. The reinforced adhesive complex coacervates have several desirable features when compared to conventional adhesives. The reinforced adhesive complex coacervates are effective in wet or underwater applications. The reinforced adhesive complex coacervates described herein, being phase separated from water, can be applied underwater without dissolving or dispersing into the water. The reinforced adhesive complex coacervates have numerous biological applications as bioadhesives and bioactive delivery devices.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: May 19, 2020
    Assignee: University of Utah Research Foundation
    Inventor: Russell J. Stewart
  • Patent number: 10653371
    Abstract: A collimator for a computed tomography imaging device can include first and second leaves positioned on opposing sides of a primary radiation delivery window. The first and second leaves can include first and second gratings having a plurality of attenuating members with a plurality of secondary radiation delivery windows extending between adjacent attenuating members.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 19, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Dominic Heuscher, Frederic Noo
  • Patent number: 10655169
    Abstract: Methods are provided for nucleic acid analysis wherein a target nucleic acid is mixed with a dsDNA binding dye to form a mixture. Optionally, an unlabeled probe is included in the mixture. A melting curve is generated for the target nucleic acid by measuring fluorescence from the dsDNA binding dye as the mixture is heated. Dyes for use in nucleic acid analysis and methods for making dyes are also provided.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: May 19, 2020
    Assignees: University of Utah Research Foundation, Biofire Defense, LLC
    Inventors: Luming Zhou, Carl T. Wittwer, Philip Seth Bernard, Virginie Dujols
  • Patent number: 10642074
    Abstract: Metamaterial optical modulators can include one or more optical inputs, one or more optical outputs, one or more control inputs and an arrangement of a plurality of elements. The plurality of elements can include one or more variable state elements. The plurality of elements as arranged can be configured to modulate one or more properties of light passing through the metamaterial optical modulator via a change in a state of the one or more variable state elements based on one or more control signals received at the one or more control inputs.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: May 5, 2020
    Assignee: University of Utah Research Foundation
    Inventor: Rajesh Menon
  • Patent number: 10627401
    Abstract: The present invention provides methods, compositions, and kits associated with analyzing, enriching, and/or isolating a biomarker or analyte in a biological sample. In one aspect, for example, a method for determining a concentration of a biomarker in a biological sample can include binding any unbound biomarker with an antibody specific for the biomarker to form antibody-bound biomarker, enriching the antibody-bound biomarker and any endogenous autoantibody-bound biomarker to form an enriched fraction, identifying the biomarker in the enriched fraction, and determining the concentration of the biomarker in the biological sample. In one aspect, the concentration of the biomarker is derived from initially unbound biomarker and autoantibody-bound biomarker in the biological sample.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: April 21, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Mark M. Kushnir, Alan L. Rockwood, A. Wayne Meikle
  • Patent number: 10614195
    Abstract: A mechanism is disclosed for reconstructing trimmed surfaces whose underlying spline surfaces intersect in model space, so that the reconstructed version of each original trimmed surface is geometrically close to the original trimmed surface, and so that the boundary of each respective reconstructed version includes a model space trim curve that approximates the geometric intersection of the underlying spline surfaces. Thus, the reconstructed versions will meet in a continuous fashion along the model space curve. The mechanism may operate on already trimmed surfaces such as may be available in a boundary representation object model, or, on spline surfaces that are to be trimmed, e.g., as part of a Boolean operation in a computer-aided design system.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: April 7, 2020
    Assignees: Board of Regents of the University of Texas System, University of Utah Research Foundation
    Inventors: Benjamin Urick, Thomas J. R. Hughes, Richard H. Crawford, Elaine Cohen, Richard F. Riesenfeld
  • Patent number: 10610929
    Abstract: Methods of removing oxygen from a metal are described. In one example, a method (100) can include forming a mixture (110) including a metal, a calcium de-oxygenation agent, and a salt. The mixture can be heated (120) at a de-oxygenation temperature for a period of time to reduce an oxygen content of the metal, thus forming a de-oxygenated metal. The de-oxygenation temperature can be above a melting point of the salt and below a melting point of the calcium de-oxygenation agent. The de-oxygenated metal can then be cooled (130). The de-oxygenated metal can then be leached with water and acid to remove by-products and obtain a product (140).
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: April 7, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Zhigang Zak Fang, Pei Sun, Yang Xia, Ying Zhang
  • Patent number: 10614256
    Abstract: A mechanism is disclosed for reconstructing trimmed surfaces whose underlying spline surfaces intersect in model space, so that the reconstructed version of each original trimmed surface is geometrically close to the original trimmed surface, and so that the boundary of each respective reconstructed version includes a model space trim curve that approximates the geometric intersection of the underlying spline surfaces. Thus, the reconstructed versions will meet in a continuous fashion along the model space curve. The mechanism may operate on already trimmed surfaces such as may be available in a boundary representation object model, or, on spline surfaces that are to be trimmed, e.g., as part of a Boolean operation in a computer-aided design system.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: April 7, 2020
    Assignees: Board of Regents of the University of Texas System, University of Utah Research Foundation
    Inventors: Benjamin Urick, Thomas J. R. Hughes, Richard H. Crawford, Elaine Cohen, Richard F. Riesenfeld
  • Patent number: 10605970
    Abstract: An optical filter may reduce the frequency and/or severity of photophobic responses or for modulating circadian cycles by controlling light exposure to cells in the human eye in certain wavelengths, such as 480 nm and 590 nm, and a visual spectral response of the human eye. The optical filter may disrupt the isomerization of melanopsin in the human eye reducing the availability of the active isoform, whereas the attenuation of light weighted across the action potential spectrum of the active isoform attenuates the phototransduction cascade leading to photophobic responses. Embodiments of an optical filter are described. In one embodiment an optical filter may be configured to transmit less than a first amount of light in certain wavelengths, and to transmit more than a second amount of light weighted across the visual spectral response. Methods of use and methods of manufacturing optical filters are also described.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 31, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Steven M. Blair, Bradley Jay Katz
  • Patent number: 10599809
    Abstract: A mechanism is disclosed for reconstructing trimmed surfaces whose underlying spline surfaces intersect in model space, so that the reconstructed version of each original trimmed surface is geometrically close to the original trimmed surface, and so that the boundary of each respective reconstructed version includes a model space trim curve that approximates the geometric intersection of the underlying spline surfaces. Thus, the reconstructed versions will meet in a continuous fashion along the model space curve. The mechanism may operate on already trimmed surfaces such as may be available in a boundary representation object model, or, on spline surfaces that are to be trimmed, e.g., as part of a Boolean operation in a computer-aided design system.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: March 24, 2020
    Assignees: Board of Regents of the University of Texas System, University of Utah Research Foundation
    Inventors: Benjamin Urick, Thomas J. R. Hughes, Richard H. Crawford, Elaine Cohen, Richard F. Riesenfeld
  • Patent number: 10595748
    Abstract: Systems, devices, and methods for providing user feedback regarding compliance with a set of partial weight bearing (PWB) criteria are described. A computer system receives force data from a non-compressible force transmitter that is assigned to a user, and accesses the force data received from the non-compressible force transmitter to determine whether the user is within a predefined pressure compliance range. The pressure compliance range specifies a prescribed range of pressure that is to be applied during a PWB period. The computer system then receives a compliance data request from the user or the user's physician and communicates compliance data representing the user's compliance with the prescribed range of pressure during the PWB period to the user and/or the user's physician.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: March 24, 2020
    Assignee: The University of Utah Research Foundation
    Inventors: Erik N. Kubiak, Kylee North, Tomasz Petelenz, Robert W. Hitchcock
  • Patent number: 10588855
    Abstract: Devices, systems, and methods for delivery of an active agent from the lens capsule to a posterior segment of the eye of a subject can include an intraocular active agent delivery device including an active agent dispersed within a biodegradable active agent matrix. The active agent includes dexamethasone and the delivery device is adapted to fit within a lens capsule or ciliary sulcus of an eye. The delivery device can be inserted into the lens capsule or ciliary sulcus of an eye during cataract surgery or for treatment of uveitis.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: March 17, 2020
    Assignee: University of Utah Research Foundation
    Inventors: Balamurali K. Ambati, Bruce K. Gale, Srinivas Rao Chennamaneni
  • Publication number: 20200071756
    Abstract: Branching phosphoramidite monomers and molecules having comb-like structures are disclosed and described. A branching phosphoramidite monomer having the structure is provided wherein R4 and R5 are independently —(O—CH2-CH2—)n where n is 1-5 or —O—(CH2—)n where n is 1-10, and R1, R2, and R3 are each one of dimethoxytrityl (DMT)—O—, levulinyl (Lev)—O—, and a phosphoramidite.
    Type: Application
    Filed: May 15, 2019
    Publication date: March 5, 2020
    Applicant: University of Utah Research Foundation
    Inventors: John D. Phillips, Jennifer M. Heemstra