Abstract: The disclosure provides a method of reducing formation of fibrotic tissue in a uterus of a subject in need thereof, comprising applying a mesenchymal stem cell (MSC) sheet to the uterus of the subject, wherein the MSC sheet comprises one or more layers of aggregated confluent mesenchymal stem cells (MSCs), and wherein applying the MSC sheet to the uterus reduces the formation of fibrotic tissue in the uterus relative to a uterus in which the MSC sheet is not applied. The disclosure also provides a method of increasing myometrial regeneration in a uterus of a subject in need thereof, comprising applying a mesenchymal stem cell (MSC) sheet to the uterus of the subject, wherein the MSC sheet comprises one or more layers of aggregated confluent mesenchymal stem cells (MSCs), and wherein applying the MSC sheet to the uterus increases myometrial regeneration relative to a uterus in which the MSC sheet is not applied.
Type:
Application
Filed:
January 15, 2020
Publication date:
December 16, 2021
Applicant:
University of Utah Research Foundation
Inventors:
Goro Kuramoto, Teruo Okano, Robert Silver, David Grainger
Abstract: A method of printing a three dimensional article (201) can include forming a bottom layer of the three dimensional article (201) by spraying a dry build material powder (210) onto a build platform (230) while heating the dry build material powder (210). The dry build material powder (210) can include metal or ceramic particles mixed with a polymeric binder having a softening point temperature. The dry build material powder (210) can be heated to a temperature above the softening point temperature such that the dry build material powder (210) adheres to the build platform (230). Subsequent layers can be formed by spraying dry build material powder (210) onto a lower layer while heating the dry build material powder (210) such that the dry build material powder (210) adheres to the lower layer.
Abstract: The present disclosure describes systems and devices capable of providing rapid polymerase chain reaction processes. A microfluidic card is insertable into a heating assembly. The heating assembly provides separate temperature zones to the card. The card includes a channel array that traverses repeatedly through the separate temperature zones so that a reaction mixture passing through the channel is subjected to thermal cycling.
Abstract: The present invention provides for methods of determining telomere length of an organism and correlating the measured telomere length with mortality risk associated with telomere length in a population. The presence of shorter telomeres is associated with an increased mortality rate and increased susceptibility to certain types of diseases for an individual member of a human population.
Abstract: A method of manufacturing a micro-molded electrode (160) having multiple individually addressable sensors (140) along a shaft (180) can include forming a recess in a mold substrate, depositing a structural material therein, depositing a conductive material at specific locations, providing a coating (190), and removing the mold substrate. A micro-molded electrode (160) having a base (170) tapering to at least one shaft (180) can include an electrode substrate, multiple individually addressable sensors (140), and a coating (190).
Abstract: Disclosed herein are methods and compositions for determining the copy number of a first target nucleic acid as compared to the copy number of a second target nucleic acid in a single well with a single detection label. For example, disclosed herein are methods and compositions for determining the copy number of a first target nucleic acid as compared to the copy number of a second target nucleic acid by a monochrome multiplex quantitative PCR (MMQPCR) in a single well with a single detection label.
Abstract: An interferometry system includes a plurality of coherent light sources that each generate a beam of coherent light. Separate waveguide pathways are optically associated with each coherent light source. Each separate waveguide pathway has an endpoint configured to emit at least a portion of the beam of coherent light from the associated light source. A plurality of photodetectors is optically associated with waveguide pathways. In some cases, a retroreflector receives the light emitted from the endpoints, modulates the received light, and directs the modulated light back to the endpoints. The modulated light and a portion of the coherent light reflected from the endpoint of the waveguide pathway receiving the modulated light is directed a photodetector.
Abstract: A catheter for imaging and treating a selected tissue and method of use is provided. Imaging, and treatment assemblies may be co-located at a distal end of a single catheter. The imaging assembly may include at least a portion of a confocal microscope. The treatment assembly may include at least a portion of the imaging assembly. A method of treating a selected tissue is also provided. The method may be performed using a single catheter. The imaging and treatment steps of the method may be performed simultaneously.
Type:
Grant
Filed:
July 28, 2016
Date of Patent:
October 26, 2021
Assignee:
University of Utah Research Foundation
Inventors:
Frank B. Sachse, Robert W. Hitchcock, Nassir F. Marrouche, Nathan J. Knighton, Chao Huang
Abstract: In one aspect, the invention relates to compositions comprising stapled peptides, methods of making same, pharmaceutical compositions comprising same, and methods of treating various diseases, including, but not limited to, metabolic disorders such as diabetes, and cancers. The disclosed compounds comprise stapled peptides, including, but not limited to, stapled glucagon, axin, and p53 peptide homologues, which are useful as therapeutic agents for a variety of diseases as disclosed herein. The disclosed methods are useful in the preparation of a variety of stapled peptides, including stapled peptide homologues of glucagon, axin, and p53. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
Abstract: An ophthalmic composition or dosage form can include a therapeutically effective amount of a cross-linking agent and a pharmaceutically acceptable carrier. The composition or dosage form can be used to treat an ophthalmic condition by administering a therapeutically effective amount of the composition to an eye of a subject during a treatment period.
Type:
Application
Filed:
June 28, 2021
Publication date:
October 21, 2021
Applicant:
University of Utah Research Foundation
Inventors:
Balamurali K. Ambati, Hironori Uehara, Santosh Muddana
Abstract: Methods and compositions for preventing and/or treating diseases and conditions caused by certain apicomplexan infections are provided. The methods involve administering/providing to a subject one or more of tartrolon D and E, including isomers thereof. Exemplary apicomplexan infections that are prevented/treated by the compounds of the invention include those caused by Cryptosporidium, Babesia, Cyclospora, Isospora, Plasmodium, Sarcocystis, Besnoitia, Hammondia, Neospora, Theileria and Toxoplasma.
Type:
Grant
Filed:
December 7, 2017
Date of Patent:
October 5, 2021
Assignees:
Washington State University, Tufts Medical Center, Inc., University of Utah
Abstract: The disclosure extends to biodegradable hollow nanoparticles, and systems, methods, devices, and processes for producing the same. The disclosure includes a method of preparing a hollow mesoporous nanoparticle by providing a plurality of silica core particles. Each of the plurality of silica core particles comprises a diameter within a range of about 600 nanometers to about 30 nanometers. The method further includes synthesizing a mesoporous silica shell around the plurality of silica core particles forming a plurality of mesoporous coated silica core particles. Further, the method provides for etching the plurality of mesoporous coated silica core particles with an aqueous solution of sodium carbonate and water to remove the silica core particle from the plurality of mesoporous coated silica core particles forming a plurality of hollow mesoporous particles. The method also includes diffusing a payload into the plurality of hollow mesoporous particles in an aqueous solution.
Abstract: Described herein are methods and compositions useful in detecting, diagnosing and treating small cell lung cancer. Transgenic animal models and cell lines are disclosed for the study of a small cell lung cancer subtype. Methods of screening and identifying active agents for the treatment of a small cell lung cancer subtype as well as methods of identifying patients susceptible to treatment with aurora kinase inhibitors are also provided.
Type:
Grant
Filed:
October 27, 2017
Date of Patent:
September 21, 2021
Assignee:
University Of Utah Research Foundation
Inventors:
Trudy Oliver, Martin Sos, Rob Wechsler-Reya
Abstract: A method of increasing detection of low-abundant fragments of cell-free DNA (ccfDNA) in a biological sample is disclosed and discussed. Such a method can include isolating an initial fraction of ccfDNA fragments from a biological sample, ligating a unique molecular identifier (UMI) to each of the ccfDNA fragments in the initial fraction, amplifying the plurality of ccfDNA fragments to generate a ccfDNA library, isolating a short fraction of ccfDNA fragments from the ccfDNA library, where the ccfDNA fragments in the short fraction are limited to a size of less than or equal to 160 base pairs (bp), amplifying the ccfDNA fragments in the short fraction, and sequencing the ccfDNA fragments in the short fraction to generate sequenced ccfDNA fragments.
Abstract: A method and system of visually communicating navigation instructions can use translational and rotational arrow cues (TRAC) defined in an object-centric frame while displaying a single principal view that approximates the human's egocentric view of the actual object. A visual guidance system and method can be used to pose a physical object within three-dimensional (3D) space. Received pose data (402) indicates a current position and orientation of a physical object within 3D space, such that the pose data can provide a view of the physical object used to generate a virtual view of the physical object in 3D space. At least two of six degrees of freedom (6DoF) error can be calculated (404) based on a difference between the current position of the physical object and a target pose of the physical object.
Abstract: Methods of minimizing dysregulation of Staufen1-associated RNA metabolism can include introducing an amount of a Staufen1-regulating agent to a target cell sufficient to minimize the dysregulation. Therapeutic compositions for treating a neurodegenerative condition associated with Staufen1-induced dysregulation of RNA metabolism can include a therapeutically effective amount of a Staufen1-regulating agent and a pharmaceutically acceptable carrier.
Type:
Application
Filed:
June 14, 2019
Publication date:
August 5, 2021
Applicant:
University of Utah Research Foundation
Inventors:
Stefan M. Pulst, Daniel R. Scoles, Sharan Paul
Abstract: The present invention provides biomarker compositions and methods for the diagnosis and prognosis of PDAC. In a particular embodiment, the invention provides methods and compositions for screening, diagnosis and prognosis of early stage, asymptomatic PDAC.
Abstract: An ophthalmic composition or dosage form can include a therapeutically effective amount of a cross-linking agent and a pharmaceutically acceptable carrier. The composition or dosage form can be used to treat an ophthalmic condition by administering a therapeutically effective amount of the composition to an eye of a subject during a treatment period.
Type:
Grant
Filed:
December 6, 2016
Date of Patent:
July 20, 2021
Assignee:
University of Utah Research Foundation
Inventors:
Balamurali K. Ambati, Hironori Uehara, Santosh Muddana
Abstract: Disclosed are compositions and methods for diagnosing eosinophilic esophagitis in a subject. Also disclosed are methods for monitoring the course of eosinophilic esophagitis in a subject before, during, and after treatment. In another aspect, disclosed is a method of diagnosing eosinophilic esophagitis or eosinophilic diseases in a subject, comprising detecting an eosinophil granule protein in the mucosal tissue of the esophagus or other organs in a subject.
Type:
Grant
Filed:
July 3, 2019
Date of Patent:
July 20, 2021
Assignee:
University of Utah Research Foundation
Inventors:
Leonard F. Pease, Hedieh Saffari, Gerald J. Gleich, Kristin M. Leiferman, Kathryn A. Peterson, Russell Morris Condie
Abstract: Bioorthogonal molecules are disclosed and described. A bioorthogonal a molecule having a structure according to: Formula (I); where R2, R3, and R4 are independently selected from H, a substituted or unsubstituted C1-C4 alkyl or alkylene group, a substituted or unsubstituted aryl, COOR9, COR9, CONR9R10, CN, CF3, SO2R9, or a tether molecule; R1 is —R5, —OCOR6, —COR7, or —R8; R5 is —R8, —OH, or tosyl; R6 is a nitrophenyl ether or —R8; R7 is —R8; R8 is a payload or a molecular linker to a payload; and R9 and R10 are independently selected from H or a substituted or unsubstituted C1-C4 alkyl or alkene group.