Patents Assigned to University of Washington
  • Patent number: 11555216
    Abstract: Methods of uniquely labeling or barcoding molecules within a cell, a plurality of cells, and/or a tissue are provided. Kits for uniquely labeling or barcoding molecules within a cell, a plurality of cells, and/or a tissue are also provided. The molecules to be labeled may include, but are not limited to, RNAs, cDNAs, DNAs, proteins, peptides, and/or antigens.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: January 17, 2023
    Assignee: University of Washington
    Inventors: Georg Seelig, Richard Muscat, Alexander B. Rosenberg
  • Patent number: 11555916
    Abstract: Examples of imaging systems are described herein which may implement microwave or millimeter wave imaging systems. Examples described may implement partitioned inverse techniques which may construct and invert a measurement matrix to be used to provide multiple estimates of reflectivity values associated with a scene. The processing may be partitioned in accordance with a relative position of the antenna system and/or a particular beamwidth of an antenna. Examples described herein may perform an enhanced resolution mode of imaging which may steer beams at multiple angles for each measurement position.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: January 17, 2023
    Assignee: University of Washington
    Inventors: Matthew S. Reynolds, Andreas Pedross-Engel, Claire Watts, Sandamali Devadithya
  • Patent number: 11555220
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 17, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11548875
    Abstract: Pyrazole compounds and piperazine compounds that are inhibitors of ALDH1A1 and ALDH1A2 and methods for using the pyrazole compounds and piperazine compounds in male contraceptive compositions for preventing spermatogenesis.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: January 10, 2023
    Assignee: University of Washington
    Inventors: Alex S. Goldstein, John K. Amory, Jisun Paik, Michael Haenisch, Nina Isoherranen, Piper Treuting, Charles H. Muller
  • Patent number: 11549144
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 10, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11550084
    Abstract: Disclosed herein are metasurfaces formed on a substrate from a plurality of posts. The metasurfaces are configured to be optically active at one or more wavelengths and in certain embodiments are configured to form lenses having unexpectedly strong focusing power. In particular, the metasurfaces are formed from “low-contrast” materials, including CMOS-compatible materials such as silicon dioxide or silicon nitride. Accordingly, the disclosed metasurfaces are generally CMOS compatible and therefore embody a new paradigm in metasurface design and manufacturing.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: January 10, 2023
    Assignee: University of Washington
    Inventors: Alan Zhan, Shane Colburn, Arka Majumdar
  • Patent number: 11549102
    Abstract: The present invention provides compositions of CD180 targeting molecules coupled to heterologous antigens, and their use in treating and/or limiting disease.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: January 10, 2023
    Assignee: University of Washington
    Inventors: Edward Clark, Jay Wesley Chaplin
  • Patent number: 11542539
    Abstract: The present disclosure provides nanoparticle transducers and methods of use thereof for the detection of analyte concentrations in a fluid. Nanoparticle transducers can comprise a nanoparticle, such as a Pdot, coupled to an enzyme that catalyzes a reaction with the analyte. The nanoparticle transducers further comprise chromophores that emit fluorescence that varies as a function of the concentration of one of the elements of the reaction. The nanoparticle transducer thus changes fluorescence as the analyte concentration changes, transforming analyte concentration values into fluorescence intensities. The measurement of these intensities provides a measurement of the analyte concentration. The nanoparticle transducers are biocompatible, allowing for use in vivo, for the monitoring of analyte blood concentrations such as blood glucose concentrations.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: January 3, 2023
    Assignees: UNIVERSITY OF WASHINGTON, LAMPROGEN, INC.
    Inventors: Daniel T. Chiu, Jiangbo Yu, Changfeng Wu, Kai Sun
  • Patent number: 11540778
    Abstract: A method for suppressing sensor noise in a spatially oversampled sensor array includes receiving spatially oversampled multi-channel sensor data from a region of interest and building a spatial model from the data for essential spatial degrees of freedom. The method further includes decomposing the data into the underlying spatial model to obtain associated amplitude components containing a mixture of original temporal waveforms of the data and, for each channel of the multi-channel sensor, estimating time-domain amplitude components using cross-validation. Next, for each channel, based on the estimated time-domain amplitude components, sensor noise and/or artifacts for that channel are identified. Finally, for each channel, the identified sensor noise and/or artifacts can be suppressed from the data.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: January 3, 2023
    Assignee: University of Washington
    Inventors: Samu Taulu, Eric D. Larson
  • Patent number: 11543681
    Abstract: Eyeglasses are disclosed that include eyeglass frames and a pair of ophthalmic lenses mounted in the frames. The lenses include a dot pattern distributed across each lens, the dot pattern including an array of dots spaced apart by a distance of 1 mm or less, each dot having a maximum dimension of 0.3 mm or less, the dot pattern including a clear aperture free of dots having a maximum dimension of more than 1 mm, the clear aperture being aligned with a viewing axis of a wearer of the pair of eyeglasses.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: January 3, 2023
    Assignee: University of Washington
    Inventors: Jay Neitz, James Kuchenbecker, Maureen Neitz
  • Patent number: 11540783
    Abstract: In some embodiments, a self-monitoring intravenous catheter system is provided. An alarm controller is provided that receives signals representing a pH value, an oxygen saturation value, and a pressure value in proximity to the distal end of the catheter. By performing a fuzzy logic analysis of the values, the alarm controller is able to detect that the catheter is about to fail or has failed, and can cause alerts to be presented. In some embodiments, an intravenous catheter is provided that has a pH sensor and an oximeter disposed at a distal end of the catheter to obtain the pH value and oxygen saturation values analyzed by the alarm controller. Embodiments of the catheter and self-monitoring intravenous catheter system may be particularly useful in treating neonates, who are sensitive to catheter failure and are not capable of detecting the signs of failure themselves.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: January 3, 2023
    Assignee: University of Washington
    Inventor: Elena M. Bosque
  • Patent number: 11541386
    Abstract: An example fluidic device includes an elastic tube, a first actuator coupled to an outer surface of the elastic tube between a first end and a second end of the elastic tube, and a second actuator coupled to the outer surface of the elastic tube between the first actuator and the second end of the elastic tube. The first actuator and the second actuator are configured to move apart from one another to transition a portion of the elastic tube positioned between the first actuator and the second actuator from a first condition to a second condition. A diameter of the elastic tube is greater in the first condition than in the second condition. The fluidic device also includes one or more rotatable components coupled to the first actuator and the second actuator which are configured to rotate the portion of the elastic tube positioned between the first actuator and the second actuator.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: January 3, 2023
    Assignee: University of Washington
    Inventors: Mark E. Fauver, Eric J. Seibel
  • Publication number: 20220411046
    Abstract: Apparatuses and methods for controlling fluid flow over surfaces, e.g. wings, are disclosed. A system can include a surface influenced by a fluid flow moving across the surface, a vortex generator disposed proximate to the surface, the vortex generator for altering a vortex pattern within the fluid flow moving across the surface, and a controller for activating the vortex generator to alter the vortex pattern within the fluid flow moving across the surface. The vortex generator can comprise one or more fluid injectors each for injecting a fluid jet into the fluid flow driven by air pressure. The fluid injectors can be disposed along a leading edge of a strake where the strake is disposed on an engine nacelle and the surface comprises an aircraft wing surface. Activation can occur under open or closed loop control with sensors.
    Type: Application
    Filed: November 19, 2020
    Publication date: December 29, 2022
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Giovanni NINO, Lucas J. WEBER, Tobias WITTIG, Robert E. BREIDENTHAL
  • Publication number: 20220409056
    Abstract: An imaging system may include: a first light source configured to emit a first source spectrum of collimated light; a second light source configured to emit a second source spectrum of light; a probe head configured to direct the first source spectrum and the second source spectrum toward tissue in an oral cavity and to collect a first feedback spectrum of light and a second feedback spectrum of light; an interferometry sub-system to generate an optical feedback signal using the first source spectrum; at least one optical sensor array for receiving the optical feedback signal and the second feedback spectrum; and at least one programmable processor to generate: a first diagnostic image of the tissue using the optical feedback signal; a second diagnostic image of the tissue using the second feedback spectrum; and a third diagnostic image from a combination of the first diagnostic image and the second diagnostic image.
    Type: Application
    Filed: October 16, 2020
    Publication date: December 29, 2022
    Applicants: Colgate-Palmolive Company, University of Washington
    Inventors: Hrebesh Molly SUBHASH, LaTonya KILPATRICK-LIVERMAN, Ruikang WANG, Nhan LE
  • Patent number: 11534461
    Abstract: The present disclosure provides binding proteins and TCRs with high affinity and specificity against Merkel cell polyomavirus T antigen epitopes or peptides, T cells expressing such high affinity Merkel cell polyomavirus T antigen specific TCRs, nucleic acids encoding the same, and compositions for use in treating Merkel cell carcinoma.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: December 27, 2022
    Assignees: FRED HUTCHINSON CANCER CENTER, UNIVERSITY OF WASHINGTON
    Inventors: Aude G. Chapuis, Paul T. Nghiem, Megan S. McAfee, Natalie J. Miller, Kelly Garneski Paulson, David Martin Koelle, Thomas M. Schmitt, Candice Church
  • Patent number: 11534476
    Abstract: The disclosure provides methods of preventing or treating heart failure in a mammalian subject. The methods comprise administering to the subject an effective amount of an aromatic-cationic peptide to subjects in need thereof.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: December 27, 2022
    Assignees: CORNELL UNIVERSITY, UNIVERSITY OF WASHINGTON
    Inventors: Hazel H. Szeto, Peter S. Rabinovitch, Dao-Fu Dai
  • Publication number: 20220401736
    Abstract: Embodiments of the disclosure are drawn to implantable stimulator with machine learning based classifier. An implantable system includes sensors which provide sensor information to an implantable unit. The implantable unit uses a classifier on the sensor information to select a stimulation procedure which is applied via a stimulation electrode. The classifier may be generated by a trained machine learning model. The classifier may be trained on an external unit which is not implanted in the subject. The classifier may be trained based on sensor information from the implanted sensors as well as symptom information.
    Type: Application
    Filed: March 23, 2022
    Publication date: December 22, 2022
    Applicant: University of Washington
    Inventors: Jeffrey Andrew Herron, Benjamin Isaac Ferleger, Howard Jay Chizeck, Andrew L. Ko
  • Publication number: 20220401355
    Abstract: Devices for and related methods of treating a subject having a neurological injury to prevent or mitigate secondary injury are described. In an example, the devices include a base and a plurality of microneedles protruding from the base, the microneedles including a biocompatible and biodegradable matrix, and a neurologically active ingredient disposed within the matrix. In an example, a portion of the plurality of microneedles is shaped to penetrate the dura when the device is placed in contact with the dura.
    Type: Application
    Filed: May 13, 2022
    Publication date: December 22, 2022
    Applicants: University of Washington, The Regents of the University of California
    Inventors: Rajiv Saigal, Jessica Johnson, Tianyu Zhao, Maximilian Walter
  • Patent number: 11529153
    Abstract: An apparatus for vaccine generation includes a syringe with a cavity that includes a solution with photosensitizers. Microbial particles are added to the solution. A light source is capable of emitting one or more wavebands of light that are effectively absorbed by the one photosensitizers to generate singlet oxygen in the solution and other radical species that rapidly react with and damage lipids, proteins, DNA, and RNA of the microbial particles. This damage produces immunogens that can be applied as a vaccine to viruses and other infectious microbial particles. A plunger that fits within a proximal opening in the syringe is used for forcing the solution including the immunogens through the filter and out of the syringe while the photosensitizers, debris and unwanted microbial particles are trapped within the filter.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: December 20, 2022
    Assignees: UNIVERSITY OF WASHINGTON, Seattle Children's Hospital
    Inventors: James Chen, Tanner Clark, Thomas Lendvay
  • Publication number: 20220395838
    Abstract: Fluidic devices, systems, and methods for analyzing an analyte are described. In an embodiment, the fluidic devices include a housing defining a lysis chamber shaped to receive a biological sample; a lysis buffer storage chamber disposed within the housing and carrying a lysis buffer configured to lyse cells of the biological sample; a cap configured to cooperatively couple to the housing; a compressor configured to compress the lysis buffer storage chamber and expel the lysis buffer from the lysis buffer storage chamber and into the lysis chamber when the cap is uncoupled from the housing; and a porous membrane in selective fluidic communication with the lysis chamber.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 15, 2022
    Applicant: University of Washington
    Inventors: Paul Yager, Steven Bennett, Erin K. Heiniger, Sujatha Kumar, Kamal Girish Shah