Patents Assigned to University of Washington
  • Patent number: 11680283
    Abstract: Methods of uniquely labeling or barcoding molecules within a nucleus, a plurality of nuclei, a cell, a plurality of cells, and/or a tissue are provided. Kits for uniquely labeling or barcoding molecules within a nucleus, a plurality of nuclei, a cell, a plurality of cells, and/or a tissue are also provided. The molecules to be labeled may include, but are not limited to, RNAs and/or cDNAs.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: June 20, 2023
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Georg Seelig, Alexander B. Rosenberg, Charles Roco
  • Patent number: 11674964
    Abstract: The present disclosure provides encoded chromophoric polymer particles that are capable of, for example, optical and/or biomolecular encoding of analytes. The present disclosure also provides suspensions comprising a plurality of encoded chromophoric polymer particles. The present disclosure also provides methods of using the encoded chromophoric polymer particles and systems for performing multiplex analysis with encoded chromophoric polymer particles.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: June 13, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Daniel T. Chiu, Changfeng Wu, Jiangbo Yu
  • Publication number: 20230173459
    Abstract: The present disclosure features a composition, including molecularly imprinted crosslinked polymers that have been imprinted with trimethylamine N-oxide. The molecularly imprinted crosslinked polymers have specific binding sites for trimethylamine N-oxide, and a trimethylamine N-oxide absorption capacity of at least 0.5 mg/g.
    Type: Application
    Filed: November 18, 2022
    Publication date: June 8, 2023
    Applicant: University of Washington
    Inventors: Buddy D. Ratner, Runbang Tang
  • Publication number: 20230175920
    Abstract: A method for predicting if a flow over a smooth ramp surface will separate from the ramp surface, wherein the ramp surface has a slope that is everywhere non-positive along the length of the ramp surface relative to the flow at the inflow end of the ramp surface includes i) dividing the height of the ramp surface by the length of the ramp surface to determine a height-to-length ratio of the ramp surface, ii) identifying a maximum slope magnitude of the ramp surface, iii) calculating a maximum normalized slope by dividing the maximum slope magnitude of the ramp surface by the height-to-length ratio of the ramp surface, and calculating a critical ramp slope as a linear function of the height-to-length ratio of the ramp surface. If the maximum normalized slope is greater than the critical ramp slope, the method predicts the turbulent boundary layer will separate from the ramp surface.
    Type: Application
    Filed: May 18, 2021
    Publication date: June 8, 2023
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Antonino Ferrante, Abhiram Aithal, Dawei Lu
  • Patent number: 11667972
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: June 6, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11668713
    Abstract: Methods and systems for improved labeling and/or de-labeling a molecule or cell in the context of scientific experimentation, industrial applications, and clinical investigation, including the means to repeat the process of labeling and de-labeling in an efficient manner.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: June 6, 2023
    Assignee: UNIVERSITY OF WASHINGTON
    Inventors: Daniel T. Chiu, Chun-Ting Kuo, Li Wu
  • Publication number: 20230168198
    Abstract: Systems and methods for detecting a target moiety are disclosed. A system includes a substrate holder including a porous matrix. The porous matrix includes a first detectable agent and a second detectable agent. The system includes a housing, optically coupled with the substrate holder, and shaped to optically couple with a radiation source and a radiation sensor and to optically isolate the radiation source and the radiation sensor. The system includes an excitation filter, disposed in or on the housing, configured to receive excitation electromagnetic radiation from the radiation source and to transmit a first portion of the excitation electromagnetic radiation to the porous matrix. The system also includes an emission filter, disposed in or on the housing, configured to receive emitted fluorescence electromagnetic radiation from the porous matrix and to transmit a second portion of the emitted fluorescence electromagnetic radiation, the second portion being different from the first portion.
    Type: Application
    Filed: August 10, 2021
    Publication date: June 1, 2023
    Applicant: University of Washington
    Inventors: Paul Yager, Kamal Girish Shah
  • Patent number: 11661583
    Abstract: Methods of screening agents in a cardiomyocyte population are provided. The cardiomyocyte population may be differentiated from a dystrophin knockout iPSC line. High-throughput methods of screening agents in a cardiomyocyte population that has been differentiated from a dystrophin knockout iPSC line are also provided. The methods may include determining an effect of the agents on membrane barrier function by using a cell viability assay. Methods of making dystrophin knockout iPSC lines, making dystrophin knockout iPSC derived cardiomyocytes, and modeling dystrophin deficient cardiomyopathy are also provided.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: May 30, 2023
    Assignee: University of Washington
    Inventors: Martin K. Childers, Xuan Guan
  • Patent number: 11660046
    Abstract: Systems and methods of identifying medical disorders in one or more subjects are disclosed herein. In one embodiment, sound is transmitted toward a subject and at least a portion of the sound reflected by the subject and is acquired as echo data. The acquired echo data is used to generate a motion waveform having a plurality of peaks detected therein. At least a portion of the plurality of peaks may be indicative of movement of the subject. One or more medical disorders in the subject can be identified based on, for example, time durations and/or amplitude changes between peaks detected in the motion waveform.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: May 30, 2023
    Assignee: University of Washington
    Inventors: Shyamnath Gollakota, Rajalakshmi Nandakumar, Nathaniel F. Watson
  • Publication number: 20230159979
    Abstract: Transducers, kits, systems, and methods for determining a concentration of an analyte are described. In an embodiment, the transducers include a chromophore; and an enzyme physically associated with the chromophore. In an embodiment, the transducer is configured to catalyze a reaction comprising a plurality of reaction elements. In an embodiment, the plurality of reaction elements comprises one or more reactants including the analyte and one or more products. In an embodiment, an amount of fluorescence emitted from the chromophore is determined by a concentration of a reaction element of the plurality of reaction elements.
    Type: Application
    Filed: April 15, 2021
    Publication date: May 25, 2023
    Applicants: UNIVERSITY OF WASHINGTON, LAMPROGEN, INC.
    Inventors: Daniel T. Chiu, Haobin Chen, Jiangbo Yu
  • Patent number: 11655278
    Abstract: De novo designed polypeptides that bind to IL-2 receptor ?c heterodimer (IL-2R?c), IL-4 receptor ?c heterodimer (IL-4R?c), or IL-13 receptor ? subunit (IL-13R?) are disclosed, as are methods for using and designing the polypeptides.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: May 23, 2023
    Assignees: UNIVERSITY OF WASHINGTON, THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Daniel Adriano Silva Manzano, Shawn Yu, David Baker, Kenan Christopher Garcia, Jamie Spangler, Carl Walkey, Umut Ulge
  • Patent number: 11647903
    Abstract: In some embodiments, techniques for using machine learning to enable visible light pupilometry are provided. In some embodiments, a smartphone may be used to create a visible light video recording of a pupillary light reflex (PLR). A machine learning model may be used to detect a size of a pupil in the video recording over time, and the size over time may be presented to a clinician. In some embodiments, a system that includes a smartphone and a box that holds the smartphone in a predetermined relationship to a subject's face is provided. In some embodiments, a sequential convolutional neural network architecture is used. In some embodiments, a fully convolutional neural network architecture is used.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: May 16, 2023
    Assignee: University of Washington
    Inventors: Lynn B. McGrath, Anthony Law, Randall Bly, Shwetak N. Patel, Alex T. Mariakakis, Jacob Baudin
  • Publication number: 20230144336
    Abstract: Examples of charging systems are described which may utilize a network of resonator circuits. Control methods are described which may locate a charging location at which an electronic device is placed proximate the charging system and identify a path of resonator circuits to activate to charge the electronic device. Individual resonator circuits in the path may be activated by selecting a resonant frequency of the resonator circuit such that power may be transferred by the resonator circuit at an operating frequency.
    Type: Application
    Filed: February 25, 2021
    Publication date: May 11, 2023
    Applicant: University of Washington
    Inventors: Joshua R. Smith, Xingyi Shi
  • Patent number: 11643686
    Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: May 9, 2023
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Jesse Salk, Lawrence A. Loeb, Michael Schmitt
  • Patent number: 11644656
    Abstract: Apparatuses, systems, and methods for an open-top light-sheet (OTLS) microscope which includes an illumination objective and a collection objective which have optical axes which are non-orthogonal to each other. The optical axis of the collection objective may be orthogonal to a plane of the sample holder. The illumination and collection objective may be located below the sample holder. The OTLS microscope may optionally include a second collection objective which has an optical axis orthogonal to the optical axis of the illumination objective. The illumination objective may be an air objective, and the collection objective may be an immersion objective.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: May 9, 2023
    Assignee: University of Washington
    Inventors: Adam K. Glaser, Jonathan T. C. Liu
  • Publication number: 20230137595
    Abstract: Restoring and/or augmenting neural function may be achieved in some examples by receiving signals associated with a first region of a nervous system, and generating a stimulation pattern based on the signals associated with the first region of the nervous system and a first artificial network. The stimulation pattern may be provided to a second region of the nervous system to induce a behavioral output. In some examples, a second artificial network may be used to train the first artificial network. The second artificial network may be configured to predict the behavioral output from the individual based on the stimulation provided by the first artificial network. Parameters of the first artificial network can be adjusted using the output of the second artificial network to optimize the output signals of the first artificial network to achieve restoration and/or augmentation goals.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 4, 2023
    Applicant: University of Washington
    Inventor: Rajesh P.N. Rao
  • Publication number: 20230139101
    Abstract: Methods of uniquely labeling or barcoding molecules within a cell, a plurality of cells, and/or a tissue are provided. Kits for uniquely labeling or barcoding molecules within a cell, a plurality of cells, and/or a tissue are also provided. The molecules to be labeled may include, but are not limited to, RNAs, cDNAs, DNAs, proteins, peptides, and/or antigens.
    Type: Application
    Filed: July 25, 2022
    Publication date: May 4, 2023
    Applicant: University of Washington
    Inventors: Georg Seelig, Richard Muscat, Alexander B. Rosenberg
  • Publication number: 20230133243
    Abstract: The present disclosure provides, among other things, immune suppression regimens for in vivo gene therapy and uses thereof. In various embodiments of the present disclosure, in vivo gene therapy includes delivery of at least one exogenous coding nucleic acid sequence to a stem cell of the subject. Success of in vivo gene therapy can be inhibited or reduced by immunotoxicity. The present disclosure provides compositions and methods, including among other things immune suppression regimens, that reduce immunotoxicity of in vivo gene therapy, e.g., in vivo gene therapy including administration of a viral gene therapy vector to a subject.
    Type: Application
    Filed: April 12, 2021
    Publication date: May 4, 2023
    Applicants: Fred Hutchinson Cancer Center, University of Washington
    Inventors: Andre Lieber, Hans-Peter Kiem
  • Publication number: 20230132667
    Abstract: Methods for identifying selective RNA-binding small molecules by NMR screening. The method provides a screening cascade to identify molecules that bind to an RNA structure, such as HIV TAR. Compounds that bind to structured RNAs and that are useful to disrupt the formation of RNA-protein complexes, such as P-TEFb-Tat-TAR complex.
    Type: Application
    Filed: May 25, 2021
    Publication date: May 4, 2023
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Matthew Shortridge, Gabriele Varani, Venkata Vidadala
  • Publication number: 20230137546
    Abstract: In some embodiments, a self-monitoring intravenous catheter system is provided. An alarm controller is provided that receives signals representing a pH value, an oxygen saturation value, and a pressure value in proximity to the distal end of the catheter. By performing a fuzzy logic analysis of the values, the alarm controller is able to detect that the catheter is about to fail or has failed, and can cause alerts to be presented. In some embodiments, an intravenous catheter is provided that has a pH sensor and an oximeter disposed at a distal end of the catheter to obtain the pH value and oxygen saturation values analyzed by the alarm controller. Embodiments of the catheter and self-monitoring intravenous catheter system may be particularly useful in treating neonates, who are sensitive to catheter failure and are not capable of detecting the signs of failure themselves.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 4, 2023
    Applicant: University of Washington
    Inventor: Elena M. Bosque