Abstract: The present invention provides for a genetically modified yeast cell comprising at least six or more of the following modifications: increased expression of Mus musculus fatty acid reductase, acetyl-CoA carboxylase, fatty acid synthase 1, fatty acid synthase 2, a mutant of the bottleneck enzyme encoded by ACC1 insensitive to post-transcriptional and post-translational repression, and/or a desaturase encoded by OLE1, and reduced expression of DGA1, HFD1, ADH6, and/or GDH1. The present invention provides a method for constructing the genetically modified yeast cell, and a method for producing a fatty alcohol from the genetically modified yeast cell.
Type:
Grant
Filed:
May 14, 2018
Date of Patent:
February 11, 2020
Assignee:
The Regents of the University of California
Abstract: Methods and compositions are provided for combined transplantation of a solid organ and hematopoietic cells to an HLA mismatched recipient, where tolerance to the graft is established through development of a persistent mixed chimerism. An individual with persistent mixed chimerism, usually for a period of at least six months, is able to withdraw from the use of immunosuppressive drugs after a period of time sufficient to establish tolerance.
Type:
Grant
Filed:
August 22, 2018
Date of Patent:
February 11, 2020
Assignee:
The Board of Trustees of the Leland Stanford Junior University
Abstract: Disclosed are a system device for preparing an alkylate oil using a sulfuric acid catalyst and a manufacturing method thereof. The system device comprises a reactor unit (100), a catalyst and hydrocarbon circulation unit (200), a separator unit (300), an isobutane circulation unit (500) and a fractionator unit (400). The reactor unit (100) is connected and in communication with the catalyst and hydrocarbon circulation unit (200) and the separator unit (300) via channels respectively. The catalyst and hydrocarbon circulation unit (200) is connected and in communication with the separator unit (300) via channels. The separator unit (300) is connected and in communication with the isobutane circulation unit (500) and the fractionator unit (400) via channels respectively. The catalyst and hydrocarbon circulation unit (200), the separator unit (300), the isobutane circulation unit (500) and the fractionator unit (400) are connected and in communication with the reactor unit (100) via channels respectively.
Type:
Grant
Filed:
May 20, 2016
Date of Patent:
February 11, 2020
Assignee:
Beijing University of Chemical Technology
Abstract: A method of designing and manufacturing a replica composite object based on an original object. The method identifies the structure and physical properties of an original object. Base materials, bodies, and structural templates, each of which includes associated physical properties, are utilized to generate a 3-dimensional model. The 3-dimensional model is discretized and tested to determine if the selected combination of base materials and bodies have physical properties that substantially equal the physical properties of the original object. If the physical properties do not equate, the 3-dimensional model is optimized by adjusting the combination of base materials, bodies, and structural templates. When the difference between the measured physical properties of the 3-dimensional model and the identified physical properties of the original object is less than a tolerance value, the method instructs an additive manufacturing system to generate a replica composite object based on the original object.
Type:
Grant
Filed:
November 9, 2018
Date of Patent:
February 11, 2020
Assignee:
University of Central Florida Research Foundation, Inc.
Abstract: Memristor-based multipliers using memristors-as-drivers (MAD) gates. As a result of employing MAD gates in memristor-based multipliers, such as shift-and-add multipliers, Booth multipliers and array multipliers, the number of delay steps may be less than half than the number of delay steps required in traditional CMOS implementations of multipliers. Furthermore, by using MAD gates, memristor-based multipliers can be implemented with less complexity (e.g., fewer memristors and drivers). As a result, by the memristor-based multipliers using MAD gates, the speed and complexity of a wide variety of arithmetic operations is improved.
Type:
Grant
Filed:
April 29, 2019
Date of Patent:
February 11, 2020
Assignee:
Board of Regents, The University of Texas System
Abstract: The invention relates to a plant that includes a transgene encoding a heterologous polypeptide conferring on plant expressing said polypeptide resistance to a hemipteroid sap-sucking insect. The transgene is also expressed in a plant component (such as a leaf). Typically, expression of such polypeptides deters feeding by insects such as psyllids (such as an Asian citrus psyllid, the African citrus psyllid, or the American citrus psyllid). Exemplary plants useful in the invention are citrus or solanaceous plants.
Type:
Grant
Filed:
June 4, 2015
Date of Patent:
February 11, 2020
Assignee:
Cornell University
Inventors:
Herb Aldwinckle, Kerik Cox, Charles Linn, Ewa Borejsza-Wysocka, Jean-Michel Hily, Dong H. Cha
Abstract: Genetically-modified plants having increased tolerance to heat stress are described. Methods of producing such genetically-modified plants are also disclosed. The genetically-modified plants comprise exogenous nucleic acid encoding a thermostable protein having starch synthase activity. Genetically-modified plants have increased yield when grown under elevated conditions as compared to control plants.
Type:
Grant
Filed:
April 19, 2018
Date of Patent:
February 11, 2020
Assignee:
Kansas State University Research Foundation
Inventors:
Harold N. Trick, Allan Fritz, Shyamal Talukder
Abstract: Disclosed herein are a magnetic tunnel junction (MTJ) structure with perpendicular magnetic anisotropy (PMA) and a magnetic element including the same. The MTJ structure with PMA includes a substrate, a perpendicular magnetic anisotropic inducing layer configured to be disposed on the substrate and including an oxide-based material, a perpendicular antiferromagnetic layer configured to be disposed on the perpendicular magnetic anisotropic inducing layer and including an antiferromagnetic material, a first ferromagnetic layer configured to be disposed on the perpendicular antiferromagnetic layer and having PMA, a tunneling barrier layer configured to be disposed on the first ferromagnetic layer, and a second ferromagnetic layer configured to be disposed on the tunneling barrier layer and having PMA.
Type:
Grant
Filed:
March 22, 2017
Date of Patent:
February 11, 2020
Assignee:
Industry-University Cooperation Foundation Hanyang University
Abstract: The disclosed invention relates to novel materials and associated methods for conducting protons, such materials comprising cephalopod proton-conducting proteins such as reflectins. The protonic conductivity of such cephalopod proton-conducting proteins may be modulated by the application of an electric field. The invention further encompasses protonic transistors comprising a cephalopod proton-conducting protein channel. The transistors and related devices of the invention are amenable to use in biological systems for the sensing or manipulation of protonic flows within the biological system.
Type:
Grant
Filed:
October 3, 2017
Date of Patent:
February 11, 2020
Assignee:
The Regents of the University of California
Inventors:
Alon Gorodetsky, Long Phan, Ward Walkup, David Ordinario
Abstract: A TEM line to double-ridged waveguide launcher and horn antenna are disclosed. The launcher uses multiple probes or one or more wide-aspect probes across the ridge gap to minimize spreading inductance and a TEM combiner or matching taper to match the impedance of the probes over a broad bandwidth. The horn uses a power-law scaling of gap height relative to the other dimensions of the horn's taper in order to provide a monotonic decrease of cutoff frequencies in all high-order modes. Both of these techniques permit the implementation of ultra-wideband designs at high frequencies where fabrication tolerances are most difficult to meet.
Abstract: A nested mixed-radix DDSM can guarantee zero systematic frequency error when used as a divider controller in a fractional-N frequency synthesizer is described. This disclosure presents a nested cascaded mixed-radix DDSM architecture which can also guarantee zero systematic frequency error. In addition, the disclosure allows one to use higher order auxiliary modulators and shaped dither signal to eliminate feedthrough spurs completely. By increasing the number of levels in the cascade, the moduli of the individual modulator stages can be reduced, thereby increasing the speed of the synthesizer.
Type:
Grant
Filed:
August 30, 2018
Date of Patent:
February 11, 2020
Assignee:
University College Cork-National University of Ireland, Cork
Abstract: A particle detection system for calibrating a particle therapy machine or validating a particle therapy plan. The detector system includes one or more two-dimensional particle detection layers for receiving a particle beam and one or more compensating layers. The compensating layer(s) are configured to adjust energy loss and scatter values introduced by the one or more two-dimensional particle detection layers to match water-equivalent values. Each compensation layer is positioned adjacent a respective one of the one or more two-dimensional particle detection layers.
Type:
Grant
Filed:
July 8, 2015
Date of Patent:
February 11, 2020
Assignee:
The Trustees of the University of Pennsylvania
Abstract: A method and apparatus for uniformly and directionally aligning and stretching nanofibers inside a porous medium is described. The nanofibers may include nanotubes, nanowires, long-chain polymer molecules or likewise. Porous medium may include a porous layer, fabric, or composite prepreg or likewise. According to one embodiment, an apparatus for directional alignment of nanofiber in a porous medium includes a fluid matrix with nanofibers. A porous medium is provided as well as a device for forcing the fluid matrix radially through the porous medium.
Abstract: The present invention comprises methods and devices for modulating the activity or activities of living cells, such as cells found in or derived from humans, animals, plants, insects, microorganisms and other organisms. Methods of the present invention comprise use of the application of ultrasound, such as low intensity, low frequency ultrasound, to living cells to affect the cells and modulate the cells' activities. Devices of the present invention comprise one or more components for generating ultrasound waves, such as ultrasonic emitters, transducers or piezoelectric transducers, composite transducers, CMUTs, and which may be provided as single or multiple transducers or in an array configurations. The ultrasound waves may be of any shape, and may be focused or unfocused.
Type:
Grant
Filed:
June 24, 2016
Date of Patent:
February 11, 2020
Assignee:
Arizona Board of Regents on behalf of Arizona State University
Abstract: Brain-penetrating polymeric nanoparticles that can be loaded with drugs and are optimized for intracranial convection-enhanced delivery (CED) have been developed. In the preferred embodiment, these are loaded with FDA-approved compounds, identified through library screening to target brain cancer stem cells (BSCSs). The particles are formed by emulsifying a polymer-drug solution, then removing solvent and centrifuging at a first force to remove the larger particles, then collecting the smaller particles using a second higher force to sediment the smaller particles having a diameter of less than 100 nm, more preferably less than 90 nanometers average diameter, able to penetrate brain interstitial spaces.
Type:
Grant
Filed:
May 6, 2013
Date of Patent:
February 11, 2020
Assignee:
Yale University
Inventors:
Jiangbing Zhou, Toral R. Patel, Joseph M. Piepmeier, William Mark Saltzman
Abstract: This disclosure provides systems, methods, and apparatus related to arrangements including electron microscopy grids. In one aspect an arrangement includes an electron microscopy grid. The electron microscopy grid comprises a first surface and a second surface, with the first surface having a holey carbon film disposed thereon. A plurality of lipid molecules are disposed in a hole in the holey carbon film. Each lipid molecule of the plurality of lipid molecules has a hydrophilic head and a hydrophobic tail. A biotin-binding protein is attached to the hydrophilic heads of the plurality of lipid molecules. The biotin-binding protein is crystalline.
Type:
Grant
Filed:
December 18, 2017
Date of Patent:
February 11, 2020
Assignee:
The Regents of the University of California
Abstract: Systems for screening and health monitoring of materials are provided. The system can include a material embedded with magneto-electric nanoparticles (MENs), a laser configured to direct incident laser light waves at a target area of the material, an optical filter disposed between the laser and the material, and an analyzer configured to detect the laser light reflected from the material.
Type:
Grant
Filed:
December 28, 2018
Date of Patent:
February 11, 2020
Assignee:
The Florida International University Board of Trustees
Abstract: Described herein are at least compounds and formulations that can be or contain a docosahexaenoic acid-lysophosphatidylcholine (DHA-LPC) and/or eicosapenteanoic acid-lysophosphatidylcholine (EPA-LPC). Also described herein are at least methods of making and using the compositions and formulations DHA-LPC and/or EPA-LPC.
Type:
Grant
Filed:
May 10, 2018
Date of Patent:
February 11, 2020
Assignee:
The Board of Trustees of The University of Illinois
Inventors:
Papasani V. Subbaiah, Poorna Yalagala, Sugasini Dhavamani
Abstract: Disclosed herein, inter alia, are compositions and methods for modulating the activity of N-acylethanolamine acid amidase for the treatment of a pathological state, including pain, an inflammatory condition, or a neurodegenerative disorder.
Type:
Grant
Filed:
May 16, 2017
Date of Patent:
February 11, 2020
Assignees:
The Regents of the University of California, Fondazione Istituto Italiano di Technologia
Inventors:
Daniele Piomelli, Rita Scarpelli, Marco Migliore, Roger Heim, Miguel Garcia-Guzmàn
Abstract: Provided is a method for producing chondrocytes from pluripotent stem cells, the method comprising the steps of: (i) culturing pluripotent stem cells under adherent conditions in a medium containing an HMG-CoA reductase inhibitor and one or more substances selected from the group consisting of BMP2, TGF? and GDF5, and (ii) culturing the cells obtained in step (i) under suspension conditions in a medium containing an HMG-CoA reductase inhibitor and one or more substances selected from the group consisting of BMP2, TGF? and GDF5. Also provided is a pharmaceutical product comprising chondrocytes obtained by the method.