Patents Assigned to University
  • Patent number: 10500275
    Abstract: An object of the present invention is to provide a novel method that is excellent in superovulation induction efficiency. Specifically, it is an object to provide a method giving superior superovulation induction efficiency as compared with conventional methods using equine chorionic gonadotropin (eCG) and human chorionic gonadotropin (hCG). The present invention provides a superovulation inducing method, comprising simultaneously administering anti-inhibin antibody and equine chorionic gonadotropin (eCG), then, administering human chorionic gonadotropin (hCG), to a female mouse.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: December 10, 2019
    Assignee: National University Corporation Kumamoto University
    Inventors: Naomi Nakagata, Toru Takeo
  • Patent number: 10505629
    Abstract: An optical wireless communications receiver includes a set of photodetectors and signal processing circuitry that receive and process optical communications signals to generate receive data. The receiver includes a spatial light modulator (SLM) and associated SLM controller. The SLM receives an incident optical communications signals from remote optical transmitters and selectively directs the received optical communications signals to the photodetectors to realize an SLM pattern according to SLM control signals from the SLM controller. A system controller establishes the SLM pattern and communicates a description of it to the SLM controller for use in generating the SLM control signals. The receiver may be used in a variety of applications, including so-called visible-light communications or VLC, in which data is transmitted over an optical link using light in the visible spectrum.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: December 10, 2019
    Assignee: Trustees of Boston University
    Inventors: Thomas DC Little, Jimmy Chau
  • Patent number: 10500271
    Abstract: The present invention is drawn to compositions and methods to enhance an immune response in order to prevent or treat infections or hyperproliferative diseases such as cancer. More particularly, the composition is an immunostimulatory intracellular signaling peptide fused directly or indirectly to a peptide that leads to multimerization into complexes of three or more units, where the intracellular signaling peptide must be present in a complex of three or more units in order to stimulate an immune response. Inserting this fusion construct into viruses like HIV-1 or introducing it into dendritic cells or tumor cells is predicted to lead to a positive therapeutic effect in humans, non-human mammals, birds, and fish.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: December 10, 2019
    Assignee: The Regents of the University of California
    Inventors: Richard Syd Kornbluth, Geoffrey William Stone
  • Patent number: 10499628
    Abstract: Dispenser devices suitable for use on unmanned aerial vehicles are described having utility for dispensing solid larvicides to difficult to reach insect habitats.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: December 10, 2019
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Gregory M. Williams, Randy Gaugler
  • Patent number: 10500287
    Abstract: The present invention is directed to an amphipathic peptide and methods of using the amphipathic peptide for delivering small molecule agents to a cell. Ideally, the amphipathic cell penetrating peptide comprises less than approximately 50 amino acid residues with at least 6 arginine residues, at least 12 Alanine Residues, at least 6 leucine residues, optionally at least one cysteine residue, and at least two but no greater than three glutamic acids wherein the arginine residues are evenly distributed along the length of the peptide; and the peptide has a defined ratio of arginine to negatively charged amino acid residues and a defined ratio of hydrophilic amino acid residues to hydrophobic amino acid residues. The present invention is also directed to a nanoparticle and cell delivery system comprising the amphipathic cell penetrating peptide of the invention. The peptide, nanoparticle or cell delivery system of the invention may be used in therapy.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 10, 2019
    Assignee: The Queen's University of Belfast
    Inventors: Helen McCarthy, Aleksey Zholobenko, Ashley Davison, Tracy Robson
  • Patent number: 10504640
    Abstract: The disclosure describes magnetic materials including iron nitride, bulk permanent magnets including iron nitride, techniques for forming magnetic materials including iron nitride, and techniques for forming bulk permanent magnets including iron nitride.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: December 10, 2019
    Assignee: Regents of the University of Minnesota
    Inventors: Jian-Ping Wang, Yanfeng Jiang
  • Patent number: 10504474
    Abstract: A data driver includes a digital to analog converter configured to receive a reference gray voltage and image data, and configured to generate gray voltages corresponding to the image data, and an output buffer including a plurality of buffer circuits connected to an output terminal of the digital to analog converter, and configured to selectively receive one of the gray voltages.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 10, 2019
    Assignees: Samsung Display Co., Ltd., Sogang University Research Foundation
    Inventors: Moon Sang Hwang, Weon Jun Choe, Jun Sang Park, Tai Ji An, Seung Hoon Lee
  • Patent number: 10501735
    Abstract: Devices for use in extracting an analyte of interest from a sample are described. In one embodiment, a device is comprised of a first plurality of chambers, where one or more chambers in the plurality of chambers has a deep end and a shallow end with a depth d1. A channel disposed between at least two adjacent chambers in the plurality of chambers has a depth greater than d1. The dimensions of the chamber and channel provide control of fluid movement in the device, particularly when introducing fluid into the device for its use and during use of the device.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: December 10, 2019
    Assignees: Quidel Corporation, Northwestern University
    Inventors: David M. Kelso, Kunal Sur, Tom Westberg, Zaheer Parpia, Mark J. Fisher
  • Patent number: 10501508
    Abstract: A fusion chimeric protein is described herein that can assemble a functional carboxysome core, which is able to fix carbon by taking atmospheric carbon dioxide and converting it into useful carbon-containing compounds such as 3-phosphoglycerate (3-PGA).
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: December 10, 2019
    Assignee: Board of Trustees of Michigan State University
    Inventors: Cheryl A. Kerfeld, Cesar R. Gonzalez
  • Patent number: 10505269
    Abstract: A magnetic antenna structure has a substrate (e.g., a flexible printed circuit board (PCB) carrier), a magneto-dielectric (MD) layer, and an antenna radiator. The MD layer increases electromagnetic (EM) energy radiation by lowering the EM energy concentrated on the antenna substrate. The resonant frequency and antenna gain of the magnetic antenna structure are generally lower and higher, respectively, relative to dielectric antennas of comparable size. Thus, the magnetic antenna structure provides better miniaturization and high performance with good conformability.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: December 10, 2019
    Assignee: The Board of Trustees of the University of Alabama for and on behalf of the University of Alabama
    Inventors: Yang-Ki Hong, Jaejin Lee
  • Patent number: 10500253
    Abstract: The present disclosure provides compositions and methods for improving reproductive health of mammals and increasing milk production from female mammals. The methods involve administering an effective amount of IL-8 to a female mammal such that the reproductive health of the mammal is improved, or milk production from the mammal is increased, or the fat content of the milk is increased. In another aspect the disclosure includes prophylaxis and/or therapy of uterine conditions by administering IL-8 to a female mammal.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: December 10, 2019
    Assignee: Cornell University
    Inventor: Rodrigo Carvalho Bicalho
  • Patent number: 10500268
    Abstract: Disclosed are compositions and methods for related to mutant influenza viruses with increased fidelity.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: December 10, 2019
    Assignee: University of Rochester
    Inventors: Andrew Cox, Stephen Dewhurst
  • Patent number: 10501797
    Abstract: Whether a fetus has an aneuploidy associated with a first chromosome is detected using ratios of alleles detected in a maternal sample having a mixture of maternal and fetal DNA. DNA from the sample is enriched for target regions associated with polymorphic loci and then sequenced. Polymorphic loci (e.g., single nucleotide polymorphisms) in the target regions with fetal-specific alleles are identified on a first chromosome and on one or more reference chromosomes. A first ratio of the fetal-specific alleles and shared alleles is determined for the loci on the first chromosome. A second ratio of the fetal-specific alleles and shared alleles is determined for the loci on the reference chromosome(s). A third ratio of the first and second ratio can be compared to a cutoff to determine whether an aneuploidy is present, and whether the aneuploidy is maternally-derived or paternally-derived.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: December 10, 2019
    Assignee: The Chinese University of Hong Kong
    Inventors: Jiawei Liao, Kwan Chee Chan, Wai Kwun Rossa Chiu, Yuk Ming Dennis Lo
  • Patent number: 10500157
    Abstract: Compositions for delivery of growth factors needed for stable Tregs and methods of use thereof are provided. In preferred embodiments, the compositions can induce, increase, or enhance a functionally robust induced CD4 Treg population (e.g., Foxp3+ Treg) in vivo or ex vivo. The compositions generally include delivery vehicles including TGF-? and IL-2. Delivery vehicles include, for example, polymeric particles, silica particles, liposomes, or multilamellar vesicles. The TGF-? and IL-2 are typically co-loaded into, attached to the surface of, and/or enclosed within the delivery vehicle into the same particle for simultaneous co-delivery to cells such as T cells. Preferably the delivery vehicles are targeted to CD4. The compositions and cells treated therewith can be used in various methods of treating, for example, inflammation, inflammatory and autoimmune diseases and disorders, and inducing or maintaining tolerance including graft and transplant tolerance.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: December 10, 2019
    Assignee: Yale University
    Inventor: Tarek M. Fahmy
  • Patent number: 10501674
    Abstract: In order to substantially reduce friction during drilling operations, specialized lubricants need to be added to drilling fluid recipes. In general, lubricants reduce friction by forming a thin film of liquid that separates the solid surfaces in contact. The primary objective of this research is to evaluate the performance of enhanced activated sludge (EAS) as a lubricant in drilling fluids. EAS is activated sludge rich in lipids. The mixed consortium of microorganism in waste water treatment facilities in grown under a high carbon/nitrogen ratio to trigger lipid accumulation. Performance of EAS as drilling fluid additive was compared with commercial lubricants in terms of lubricity and flow properties. Lubricants were evaluated using water-based drilling mud at lubricant concentrations of 1.78, 3.11, 4.43, and 6.17 pounds per barrel (ppb). Experiments were carried out in a standard lubricity meter. The lubricity meter tests the ability of the lubricant in the drilling mud to reduce friction.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: December 10, 2019
    Assignee: University of Louisiana at Lafayette
    Inventors: Gopi Chand Tripuraneni, Mark Zappi, Rafael Hernandez
  • Patent number: 10499822
    Abstract: Small implantable silicon-based devices offer an ability to revolutionize the management of trauma victims. For example, implantable pressure sensors allow the devastating outcomes of compartment syndrome to be minimized through continuous or periodic monitoring whilst being compatible with the ongoing drives to increase out-patient care and reduced hospitalization time. Further, small implantable silicon-based sensor microsystems according to embodiments of the invention whilst being capable of measuring pressures under diverse conditions are easily used by nurses in hospital settings as well as also being easily deployed by paramedical personnel in cases of accidents, natural disasters, war, etc. Beneficially, the implantable sensor microsystem will not interfere with movement of the patient during stabilization, surgery, intensive care stay, outpatient management, etc.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: December 10, 2019
    Assignee: The Royal Institution for the Advancement of Learning / McGill University
    Inventors: Edward Harvey, Vamsy Chodavarapu, Charles Allan
  • Patent number: 10501865
    Abstract: A first object of the present invention is to provide a method for efficiently growing a nitride single crystal even under low pressure conditions. The present invention relates to a method for producing a nitride single crystal, comprising growing a nitride crystal on the surface of a seed crystal having a hexagonal crystal structure by setting a pressure in a reaction vessel having the seed crystal, a nitrogen-containing solvent, a mineralizer containing a fluorine atom, and a raw material placed therein to 5 to 200 MPa and performing control so that the nitrogen-containing solvent is in at least either a supercritical state or a subcritical state.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: December 10, 2019
    Assignees: Mitsubishi Chemical Corporation, Tohoku University, The Japan Steel Works, Ltd.
    Inventors: Tohru Ishiguro, Quanxi Bao, Chiaki Yokoyama, Daisuke Tomida, Shigefusa Chichibu, Rinzo Kayano, Mutsuo Ueda, Makoto Saito, Yuji Kagamitani
  • Patent number: 10501770
    Abstract: Methods, systems, and devices are disclosed for providing a portable enzymatic-ink dispensing system. The system includes an enzymatic-ink including one or more biocompatible binders, one or more biocompatible mediators, an enzyme, an enzyme stabilizer, and a conductive material. The system includes a dispenser including a chamber to hold the enzymatic-ink and an applicator to apply the enzymatic ink dispensed from the chamber onto a target substrate.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: December 10, 2019
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Amay Jairaj Bandodkar
  • Patent number: 10501533
    Abstract: A chimeric, humanized or single-chain antibody contains a light chain variable region containing the complementarity determining regions of SEQ ID NO:1, SEQ ID NO:2 and SEQ ID NO:3, and a heavy chain variable region containing the complementarity determining regions SEQ ID NO:5 and SEQ ID NO:6. The antibody or antibody fragment thereof is capable of binding the C-terminal telopeptide of the ?2(I) chain of human collagen I, and is useful in the treatment of diseases or disorders associated with excessive collagen fibril.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 10, 2019
    Assignee: Thomas Jefferson University
    Inventors: Andrzej Fertala, Andrzej Steplewski
  • Patent number: 10501698
    Abstract: Methods of extracting biodiesel from a mixture of biodiesel and alcohol are provided. The methods can include contacting the mixture of biodiesel and alcohol with a petrodiesel to form a two-phase system including a polar phase and a nonpolar phase, wherein the alcohol preferentially partitions into the polar phase and the petrodiesel and biodiesel preferentially partition into the nonpolar phase, and separating the nonpolar phase from the polar phase to extract the biodiesel. The methods can include using a multi-stage extraction apparatus, for example in countercurrent or crosscurrent extraction arrangement. Methods of making a biodiesel blend are also provided. The methods can include making a biodiesel blend with a biodiesel content from about B2 to about B25.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: December 10, 2019
    Assignee: University of South Florida
    Inventor: James Cameron Walker