Patents Assigned to University
  • Patent number: 8767671
    Abstract: A Space Division Multiple Access transmission method based on a statistical characteristic pattern including configuring multiple receiving and transmitting antennae at a base station side into one or more antenna arrays; comparing a diagonalization performance among the unitary matrixes for a correlation matrix of subscriber channels, with a long-time statistical correlation matrix of the subscriber channels at the base station side; calculating an optimal diagonalized correlation matrix, and then performing characteristic pattern clustering for the subscribers in a cell with the space resource divisions of the subscribers; grouping the subscribers that belong to a same characteristic pattern cluster into space division subscriber groups; carrying out SDMA transmission, by the subscribers in a same space division subscriber group, with their space resource divisions; dynamically performing subscriber characteristic pattern clustering and space division subscriber grouping described above to generate updated
    Type: Grant
    Filed: December 31, 2010
    Date of Patent: July 1, 2014
    Assignee: Southeast University
    Inventors: Xiqi Gao, Shi Jin, Dongming Wang, Jue Wang, Xiaohu You, Yuan Zhang
  • Patent number: 8764938
    Abstract: A method is provided for making “smart” paper and “smart” microfibers by means of nanotechnology layer-by-layer techniques. The method comprises forming an aqueous pulp of lignocellulose fibers and nanocoating it by alternatively adsorbing onto the fibers multiple consecutively-applied layers of organized ultra thin and oppositely-charged polyelectrolytes, at least one of which is an electrically conductive polymer or nanoparticle (or a magnetically active polymer or nanoparticle, or an optically active polymer or nanoparticle), and another one of which has a charge opposite of said electrically conductive polymer or nanoparticle (or magnetically active polymer or nanoparticle, or optically active polymer or nanoparticle), thereby making a modified aqueous pulp of electrically conductive (or magnetically active, or optically active) multi-layer nanocoated lignocellulose fibers.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: July 1, 2014
    Assignee: Louisiana Tech Research Foundation; a Division of Louisiana Tech University Foundation, Inc.
    Inventors: Mangilal Agarwal, Yuri M. Lvov, Khodadad Varahramyan
  • Patent number: 8765935
    Abstract: The invention provides a compound of formula (I), wherein R1-R6 and X have any of the values described, as well as pharmaceutical compositions comprising such compounds and therapeutic methods comprising the administration of such compounds.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: July 1, 2014
    Assignee: Regents of the University of Minnesota
    Inventor: Carston R. Wagner
  • Patent number: 8765403
    Abstract: The present invention provides methods of producing a product or product precursor of a biosynthetic pathway in a genetically modified host cell. The present invention also provides genetically modified host cells comprising nucleic acids encoding a scaffold polypeptide and nucleic acids comprising nucleotide sequences encoding two or more enzymes in a biosynthetic pathway. The present invention further provides nucleic acids comprising nucleotide sequences encoding scaffold polypeptides, for use in a subject method.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of California
    Inventors: John E. Dueber, Jay D. Keasling, Gabriel C. Wu, Ghulam Reza Khan Malmirchegini
  • Patent number: 8765414
    Abstract: Certain embodiments provide a GPCR fusion protein. In particular embodiments, the GPCR fusion protein comprises: a) a G-protein coupled receptor (GPCR); and b) an autonomously folding stable domain, where the autonomously folding stable domain is N-terminal to the GPCR and is heterologous to the GPCR. The GPCR fusion protein is characterized in that is crystallizable under lipidic cubic phase crystallization conditions. In certain embodiments, the GPCR fusion protein may be crystallizable in a complex with a G-protein or in a complex with an antibody that binds to the IC3 loop of the GPCR.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: July 1, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Brian K. Kobilka, Yaozhong Zou
  • Patent number: 8765665
    Abstract: A Factor VIII composition formulated without albumin, comprising the following formulation excipients in addition to Factor VIII: 4% to 10% of a bulking agent selected from the group consisting of mannitol, glycine and alanine; 1% to 4% of a stabilizing agent selected from the group consisting of sucrose, trehalose, raffinose, and arginine; 1 mM to 5 mM calcium salt; 100 mM to 300 mM NaCl; and a buffering agent for maintaining a pH of approximately between 6 and 8. Alternatively, the formulation can comprise 2% to 6% hydroxyethyl starch; 1% to 4% of a stabilizing agent selected from the group consisting of sucrose, trehalose, raffinose, and arginine; 1 mM to 5 mM calcium salt; 100 mM to 300 mM NaCl; and a buffering agent for maintaining a pH of approximately between 6 and 8.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: July 1, 2014
    Assignees: Baxter International Inc., University of Connecticut
    Inventors: Marc Besman, Erik Bjornson, Feroz Jameel, Ramesh Kashi, Michael Pikal, Serguei Tchessalov, John Carpenter
  • Patent number: 8768001
    Abstract: The disclosure relates to apparatus and methods for processing images. The method for generating a manga-style image from an input image comprises: generating a line drawing from the input image; generating a manga-style screening from an input image; and overlaying the line drawing and the manga-style screening to generate the manga-style image. The method can provide a high efficient way for auto-generating manga images.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: July 1, 2014
    Assignee: The Chinese University of Hong Kong
    Inventors: Tien-Tsin Wong, Yingge Qu, Wai-Man Pang, Pheng-Ann Heng
  • Patent number: 8767049
    Abstract: In accordance with one embodiment of the present disclosure, a method for deformation mapping of a tissue is provided. The method includes utilizing a device to measure transient three-dimensional deformations in a tissue sample. The device comprises a non-contacting, high-speed stereo imaging apparatus and a mechanism for digital image correlation. The method further includes identifying regions of the tissue that are prone to damage based upon the deformations.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: July 1, 2014
    Assignee: University of South Carolina
    Inventors: Arash Kheradvar, Michael A. Sutton
  • Patent number: 8765122
    Abstract: A formulation including injectable biodegradable nanospheres and/or microspheres as a delivery system for chondroitinase ABC (cABC) or a functional derivative of cABC to treat acute and chronic spinal chord injury in a mammal having the same is provided. The biodegradable nanosphere/microsphere formulation releases cABC or a functional derivative of cABC in a time-released manner at the site of the spinal cord injury. cABC infusion can promote axon regrowth and some behavioral recovery. The nanospheres and/or microspheres provided herein include cABC or a functional derivative of cABC loaded within and/or on a biodegradable polymer matrix. In some embodiments of the present invention, the surface of the biodegradable polymer matrix can be modified to target a specific scar site. In addition to providing a nanosphere formulation that include polymeric incorporated cABC, a method of treating a mammal having a spinal cord injury is also provided.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: July 1, 2014
    Assignees: The Research Foundation of State University of New York, Syracuse University
    Inventors: Donna J. Osterhout, Julie M. Hasenwinkel, Dennis J. Stelzner
  • Patent number: 8765679
    Abstract: The invention relates to isolated peptides derived from Oryza sativa Japonica Group, pharmaceutical compositions comprising same, and uses thereof for treating, preventing, ameliorating, and/or delaying the onset of inflammatory and/or neuroinflammatory and/or autoimmune diseases or conditions and in particular multiple sclerosis. The invention further relates to extracts from Oryza sativa Japonica Group and use thereof as a dietary supplement or in a pharmaceutical composition for treating, preventing, ameliorating, and/or delaying the onset of inflammatory, and/or inflammatory, neuroinflammatory and/or autoimmune diseases or conditions. The peptides and the extract of the invention may be used for treating, ameliorating, and/or delaying the onset or preventing multiple sclerosis.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: July 1, 2014
    Assignee: Yissum Research Development Company of The Hebrew University of Jerusalem Ltd.
    Inventor: Uri Wormser
  • Patent number: 8768108
    Abstract: A solid state light source comprising a light pump outputting light energy; a waveguide optically coupled to the light pump source for receiving the light energy; and a down-converter for converting the light energy from the waveguide to a lesser light energy.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Pei-Cheng Ku, Max Shtein
  • Patent number: 8768124
    Abstract: Devices, systems and techniques for directly coupling an optical slot waveguide to another optical waveguide without a taper waveguide region between the two optical waveguides.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 1, 2014
    Assignee: Georgetown University
    Inventors: Edward R. Van Keuren, Changbao Ma
  • Patent number: 8764375
    Abstract: A counter-rotating axial flow fan with improved characteristics and reduced noise compared to the related art can be provided. Defining the number of front blades as N, the number of stationary blades as M, and the number of rear blades as P, and defining the maximum axial chord length of the front blades as Lf, the maximum axial chord length of the rear blades as Lr, the outside diameter of the front blades as Rf, and the outside diameter of the rear blades as Rr, the counter-rotating axial flow fan satisfies the following two relationships: N?P>M; and Lf/(Rf×?/N)?1.25 and/or Lr/(Rr×?/P)?0.83.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: July 1, 2014
    Assignees: The University of Tokyo, Fujitsu Limited, Sanyo Denki Co., Ltd.
    Inventors: Chisachi Kato, Atsushi Yamaguchi, Akira Ueda, Kazuhiro Nitta, Akihiro Otsuka, Tadashi Katsui, Masahiro Suzuki, Yoshihiko Aizawa, Honami Oosawa
  • Patent number: 8765484
    Abstract: The invention concerns a particle having a code embedded in its physical structure by refractive index changes between different regions of the particle. In preferred embodiments, a thin film possesses porosity that varies in a manner to produce a code detectable in the reflectivity spectrum.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of California
    Inventors: Michael J. Sailor, Thomas Schmedake, Frederique Cunin, Jamie Link
  • Patent number: 8765677
    Abstract: This invention relates to an isolated, synthetic or recombinant peptide, wherein the peptide comprises the sequence: C K G K G A Xaa1 C R Xaa2 Xaa3 Xaa4 Y Xaa5 C C Xaa6 G Xaa7 C R Xaa8 Xaa9 R C SEQ ID NO: 1 wherein Xaa1, Xaa3, Xaa4, Xaa6, Xaa7 and Xaa8 are independently selected from serine and threonine; Xaa2 is selected from arginine and lysine; Xaa5 is selected from aspartic acid and glutamic acid; and Xaa9 is selected from glycine, alanine, valine, leucine and isoleucine.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: July 1, 2014
    Assignees: The University of Queensland, The University of Sydney
    Inventors: Richard Lewis, David John Adams, Geza Berecki, Roger Drinkwater, Paul Francis Alewood, MacDonald James Christie
  • Patent number: 8765120
    Abstract: The present invention provides muscle-derived cells, preferably myoblasts and muscle-derived stem cells, genetically engineered to contain and express one or more heterologous genes or functional segments of such genes, for delivery of the encoded gene products at or near sites of musculoskeletal, bone, ligament, meniscus, cartilage or genitourinary disease, injury, defect, or dysfunction. Ex vivo myoblast mediated gene delivery of human inducible nitric oxide synthase, and the resulting production of nitric oxide at and around the site of injury, are particularly provided by the invention as a treatment for lower genitourinary tract dysfunctions.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: July 1, 2014
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Michael B. Chancellor, Johnny Huard
  • Patent number: 8768022
    Abstract: A method and system of compensation for intra-operative organ shift of a living subject usable in image guide surgery. In one embodiment, the method includes the steps of generating a first geometric surface of the organ of the living subject from intra-operatively acquired images of the organ of the living subject, constructing an atlas of organ deformations of the living subject from pre-operatively acquired organ images from the pre-operatively acquired organ images, generating a second geometric surface of the organ from the atlas of organ deformations, aligning the second geometric surface of the organ to the first geometric surface of the organ of the living subject to determine at least one difference between a point of the first geometric surface and a corresponding point of the second geometric surface of the organ of the living subject, which is related to organ shift, and compensating for the intra-operative organ shift.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: July 1, 2014
    Assignee: Vanderbilt University
    Inventors: Michael I. Miga, Logan W. Clements, Robert L. Galloway
  • Patent number: 8768424
    Abstract: A photoplethysmograph device includes a light source for illuminating a target object. A modulator drives the light source such that the output intensity varies as a function of a modulation signal at a modulation frequency. A detector receives light from the target object and generates an electrical output as a function of the intensity of received light. A demodulator with a local oscillator receives the detector output and produces a demodulated output, insensitive to any phase difference between the modulation signal and the oscillator, indicative of blood volume as a function of time and/or blood composition. A number of demodulators may be provided to derive signals from multiple light sources of different wavelengths, or from an array of detectors. The plethysmograph may operate in a transmission mode or a reflectance mode. When in a reflectance mode, the device may use the green part of the optical spectrum and may use polarizing filters.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: July 1, 2014
    Assignee: The University of Nottingham
    Inventors: John Crowe, Mark Grubb, Barrie Hayes-Gill, Nicholas Miles
  • Patent number: 8764549
    Abstract: A gaming machine includes: a reel having an outer circumferential surface on which symbols are lined up; a reel driving mechanism which rotates the reel to rearrange the symbols; a magnet which is provided in the reel driving mechanism to change an external magnetic field in accordance with the rotation of the reel; a magnetic force detecting mechanism which detects a magnetic force of the external magnetic field so as to output a magnetic force detection signal; a reel setting unit by which the magnetic force detection signal and arrangement positions of the symbols are associated with one another; and a reel drive control unit which controls the reel driving mechanism so that the symbols are rearranged in a predetermined arrangement based on the magnetic force detection signal and the arrangement positions of the symbols.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 1, 2014
    Assignees: Universal Entertainment Corporation, Aruze Gaming America, Inc.
    Inventors: Tatsuhiko Tanimura, Noritoshi Kukita, Hiroatsu Ike, Yoshitomo Sasaki
  • Patent number: 8765392
    Abstract: The present invention relates to methods and kits for diagnosing, ascertaining the clinical course of myelodysplastic syndrome (MDS) and ascertaining response to a therapy regimen of myelodysplastic syndrome. Specifically the invention provides methods and kits useful in the diagnosis and determination of clinical parameters associated with MDS based on surface markers unique to MDS.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: July 1, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Jonni Moore, Sundhu Cherian, Adam Bagg