Patents Assigned to Vishay-Siliconix
  • Patent number: 9893168
    Abstract: A split gate semiconductor device includes a trench gate having a first electrode region and a second electrode region that are separated from each other by a gate oxide layer and an adjacent dielectric layer. The boundary of the gate oxide layer and the dielectric layer is curved to avoid a sharp corner where the gate oxide layer meets the sidewalls of the trench.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: February 13, 2018
    Assignee: VISHAY-SILICONIX
    Inventors: Yang Gao, Kuo-In Chen, Kyle Terrill, Sharon Shi
  • Patent number: 9887259
    Abstract: A semiconductor device—e.g., a super junction power MOSFET—includes a number of columns of one type of dopant formed in a region of another type of dopant. Generally speaking, the columns are modulated in some manner. For example, the widths (e.g., diameters) of some columns are greater than the widths of other columns.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: February 6, 2018
    Assignee: Vishay-Siliconix
    Inventors: Deva Pattanayak, Olof Tornblad
  • Patent number: 9887266
    Abstract: Ultra-low drain-source resistance power MOSFET. In accordance with an embodiment of the preset invention, a semiconductor device comprises a plurality of trench power MOSFETs. The plurality of trench power MOSFETs is formed in a second epitaxial layer. The second epitaxial layer is formed adjacent and contiguous to a first epitaxial layer. The first epitaxial layer is formed adjacent and contiguous to a substrate highly doped with red Phosphorus. The novel red Phosphorus doped substrate enables a desirable low drain-source resistance.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: February 6, 2018
    Assignee: Vishay-Siliconix
    Inventors: The-Tu Chau, Sharon Shi, Qufei Chen, Martin Hernandez, Deva Pattanayak, Kyle Terrill, Kuo-In Chen
  • Patent number: 9882044
    Abstract: Edge termination for super-junction MOSFETs. In accordance with an embodiment of the present invention, a super-junction metal oxide semiconductor field effect transistor (MOSFET) includes a core super-junction region including a plurality of parallel core plates coupled to a source terminal of the super-junction MOSFET. The super-junction MOSFET also includes a termination region surrounding the core super-junction region comprising a plurality of separated floating termination segments configured to force breakdown into the core super-junction region and not in the termination region. Each termination segment has a length dimension less than a length dimension of the core plates.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: January 30, 2018
    Assignee: Vishay-Siliconix
    Inventor: Deva Pattanayak
  • Patent number: 9853140
    Abstract: An adaptive charge balanced MOSFET device includes a field plate stacks, a gate structure, a source region, a drift region and a body region. The gate structure includes a gate region surrounded by a gate insulator region. The field plate stack includes a plurality of field plate insulator regions, a plurality of field plate regions, and a field ring region. The plurality of field plates are separated from each other by respective field plate insulators. The body region is disposed between the gate structure, the source region, the drift region and the field ring region. Each of two or more field plates are coupled to the field ring.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: December 26, 2017
    Assignee: Vishay-Siliconix
    Inventors: Naveen Tipirneni, Deva N. Pattanayak
  • Patent number: 9842911
    Abstract: In one embodiment, a semiconductor device can include a substrate including a first type dopant. The semiconductor device can also include an epitaxial layer located above the substrate and including a lower concentration of the first type dopant than the substrate. In addition, the semiconductor device can include a junction extension region located within the epitaxial layer and including a second type dopant. Furthermore, the semiconductor device can include a set of field rings in physical contact with the junction extension region and including a higher concentration of the second type dopant than the junction extension region. Moreover, the semiconductor device can include an edge termination structure in physical contact with the set of field rings.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: December 12, 2017
    Assignee: Vishay-Siliconix
    Inventors: Naveen Tipirneni, Deva N. Pattanayak
  • Patent number: 9831336
    Abstract: A process for forming a short channel trench MOSFET. The process includes forming a first implant at the bottom of a trench that is formed in the body of the trench MOSFET and forming a second or angled implant that is tilted in its orientation and directed perpendicular to the trench that is formed in the body of the trench MOSFET. The second implant is adjusted so that it does not reach the bottom of the trench. In one embodiment the angled implant is n-type material.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: November 28, 2017
    Assignee: Vishay-Siliconix
    Inventors: Zachary Lee, Deva Pattanayak
  • Patent number: 9793706
    Abstract: Presented systems and methods can facilitate efficient switching and protection in electronic systems. A system can comprise: an input operable to receive a signal; an adjustable component configurable to operate in a first mode which includes a low resistance and the component configurable to operate in a second mode which includes a current limiting operation in which the second mode enables continued operation in conditions that are unsafe for operation in the first mode; and an output operable to forward a signal. The adjustable component can be configurable to turn off if unsafe to operate in either the first mode or second mode. The first mode can include a relatively large component configuration with a relatively low drain to source on resistance. Utilizing a small component configuration in the second mode can include a relatively increased gate to source voltage compared to a large component configuration in the second mode.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: October 17, 2017
    Assignee: Vishay-Siliconix
    Inventors: Kyle Terrill, Trang Vu
  • Patent number: 9787309
    Abstract: In one embodiment, a circuit includes a resistance including first and second terminals. The first terminal of the resistance is coupled to ground. The circuit also includes a first switching element including first, second, and third terminals. The first terminal of the first switching element is coupled to an output of an integrated circuit and the second terminal of the first switching element is coupled to a voltage supply of the integrated circuit. Additionally, the circuit includes a second switching element including first, second, and third terminals. The first terminal of the second switching element is coupled to an enable input of the integrated circuit. Furthermore, the second terminal of the second switching element is coupled to the third terminal of the first switching element and to the second terminal of the resistance. Moreover, the third terminal of the second switching element is coupled to the ground.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: October 10, 2017
    Assignee: Vishay-Siliconix
    Inventor: Trang Vu
  • Patent number: 9761696
    Abstract: A trench metal-oxide-semiconductor field effect transistor (MOSFET), in accordance with one embodiment, includes a drain region, a plurality of gate regions disposed above the drain region, a plurality of gate insulator regions each disposed about a periphery of a respective one of the plurality of gate regions, a plurality of source regions disposed in recessed mesas between the plurality of gate insulator regions, a plurality of body regions disposed in recessed mesas between the plurality of gate insulator regions and between the plurality of source regions and the drain region.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: September 12, 2017
    Assignee: Vishay-Siliconix
    Inventors: Jian Li, Kuo-In Chen, Kyle Terril
  • Patent number: 9722041
    Abstract: In one embodiment, a breakdown voltage blocking device can include an epitaxial region located above a substrate and a plurality of source trenches formed in the epitaxial region. Each source trench can include a dielectric layer surrounding a conductive region. The breakdown voltage blocking device can also include a contact region located in an upper surface of the epitaxial region along with a gate trench formed in the epitaxial region. The gate trench can include a dielectric layer that lines the sidewalls and bottom of the gate trench and a conductive region located between the dielectric layer. The breakdown voltage blocking device can include source metal located above the plurality of source trenches and the contact region. The breakdown voltage blocking device can include gate metal located above the gate trench.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: August 1, 2017
    Assignee: Vishay-Siliconix
    Inventors: Robert Q. Xu, Qufei Chen
  • Patent number: 9716166
    Abstract: A laterally diffused metal oxide semiconductor (LDMOS) transistor structure with improved unclamped inductive switching immunity. The LDMOS includes a substrate and an adjacent epitaxial layer both of a first conductivity type. A gate structure is above the epitaxial layer. A drain region and a source region, both of a second conductivity type, are within the epitaxial layer. A channel is formed between the source and drain region and arranged below the gate structure. A body structure of the first conductivity type is at least partially formed under the gate structure and extends laterally under the source region, wherein the epitaxial layer is less doped than the body structure. A conductive trench-like feed-through element passes through the epitaxial layer and contacts the substrate and the source region. The LDMOS includes a tub region of the first conductivity type formed under the source region, and adjacent laterally to and in contact with said body structure and said trench-like feed-through element.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: July 25, 2017
    Assignee: Vishay-Siliconix
    Inventors: Wenjie Zhang, Madhur Bobde, Qufei Chen, Kyle Terrill
  • Patent number: 9685524
    Abstract: Systems and methods for narrow semiconductor trench structures. In a first method embodiment, a method for forming a narrow trench comprises forming a first layer of insulating material on a substrate and creating a trench through the first layer of insulating material and into the substrate. A second insulating material is formed on the first layer and on exposed portions of the trench and the second insulating material is removed from the first layer of insulating material and the bottom of the trench. The trench is filled with an epitaxial material and the first layer of insulating material is removed. A narrow trench is formed by the removal of remaining portions of the second insulating material.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: June 20, 2017
    Assignee: VISHAY-SILICONIX
    Inventors: The-Tu Chau, Hoang Le, Kuo-In Chen
  • Patent number: 9673314
    Abstract: A semiconductor device includes a trench formed in an epitaxial layer and an oxide layer that lines the sidewalls of the trench. The thickness of the oxide layer is non-uniform, so that the thickness of the oxide layer toward the top of the trench is thinner than it is toward the bottom of the trench. The epitaxial layer can have a non-uniform dopant concentration, where the dopant concentration varies according to the thickness of the oxide layer.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: June 6, 2017
    Assignee: Vishay-Siliconix
    Inventors: Chanho Park, Ayman Shibib, Kyle Terrill
  • Patent number: 9627552
    Abstract: A method for fabricating a diode is disclosed. In one embodiment, the method includes forming a Schottky contact on an epitaxial layer of silicon carbide (SiC) and annealing the Schottky contact at a temperature in the range of 300° C. to 700° C. The Schottky contact is formed of a layer of molybdenum.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 18, 2017
    Assignee: VISHAY-SILICONIX
    Inventor: Giovanni Richieri
  • Patent number: 9614043
    Abstract: A method, in one embodiment, can include forming a core trench and a termination trench in a substrate. The termination trench is wider than the core trench. In addition, a first oxide can be deposited that fills the core trench and lines the sidewalls and bottom of the termination trench. A first polysilicon can be deposited into the termination trench. A second oxide can be deposited above the first polysilicon. A mask can be deposited above the second oxide and the termination trench. The first oxide can be removed from the core trench. A third oxide can be deposited that lines the sidewalls and bottom of the core trench. The first oxide within the termination trench is thicker than the third oxide within the core trench.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: April 4, 2017
    Assignee: Vishay-Siliconix
    Inventors: Misbah Ul Azam, Kyle Terrill
  • Patent number: 9595503
    Abstract: A semiconductor package and a method for making the same are provided. In the method, a clip is used to conduct a lead frame and at least one chip. The clip has at least one second connection segment, at least one third connection segment, and at least one intermediate connection segment. The second connection segment is electrically connected to a second conduction region of the chip and a second pin of the lead frame respectively, and the third connection segment is electrically connected to a third conduction region of the chip and a third pin of the lead frame respectively. The intermediate connection segment connects the at least one second connection segment and the at least one third connection segment, and is removed in a subsequent process. Thereby, the present invention does not need to use any gold wire, which effectively saves the material cost and the processing time.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: March 14, 2017
    Assignee: VISHAY-SILICONIX
    Inventors: Frank Kuo, Suresh Belani
  • Patent number: 9589929
    Abstract: In one embodiment, a method can include coupling a gate and a source of a first die to a lead frame. The first die can include the gate and the source that are located on a first surface of the first die and a drain that is located on a second surface of the first die that is opposite the first surface. In addition, the method can include coupling a source of a second die to the drain of the first die. The second die can include a gate and a drain that are located on a first surface of the second die and the source that is located on a second surface of the second die that is opposite the first surface.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 7, 2017
    Assignee: Vishay-Siliconix
    Inventors: Kyle Terrill, Frank Kuo, Sen Mao
  • Patent number: 9577089
    Abstract: First polysilicon (poly-1) is deposited into deep trenches that have been formed in a substrate. A first polysilicon polishing process is performed to planarize the exposed surfaces of the poly-1 so that the surfaces are flush with adjacent surfaces. Then, shallow trenches are formed in the substrate between the deep trenches, and second polysilicon (poly-2) is deposited into the shallow trenches. A second polysilicon polishing process is performed to planarize the exposed surface of the poly-2 so that the surface is flush with adjacent surfaces. Metal contacts to the poly-1 and the poly-2 are then formed.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: February 21, 2017
    Assignee: Vishay-Siliconix
    Inventors: Kyle Terrill, Deva Pattanayak, Zhiyun Luo
  • Patent number: 9508596
    Abstract: During fabrication, a second oxide layer is disposed over a first region and a second region of a structure. The second region includes a first oxide layer between the second oxide layer and an epitaxial layer. The first region corresponds to an active region of a metal-insulator-semiconductor field effect transistor (MISFET), and a first-type dopant source region, a second-type dopant body region, and a second-type dopant implant region are formed in the first region. The second region corresponds to a termination region of the MISFET. A mask is formed over the second region, and parts of the second oxide layer and the first oxide layer that are exposed through the gaps are removed, thereby exposing the epitaxial layer. Second-type dopant is deposited into the epitaxial layer through the resultant openings in the first and second oxide layers, thereby forming field rings for the MISFET.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: November 29, 2016
    Assignee: Vishay-Siliconix
    Inventors: Naveen Tipirneni, Deva Pattanayak