Abstract: In one aspect, electrically conductive conjugated polymeric compositions are described herein demonstrating compatibility with aqueous solvents and/or phases. The ability to provide aqueous compatible compositions from previously water insoluble conjugated polymeric systems, in some embodiments, can facilitate use of such systems in a variety of aqueous applications, including biological applications.
Type:
Grant
Filed:
April 12, 2013
Date of Patent:
June 13, 2017
Assignee:
Wake Forest University
Inventors:
Nicole Levi, David L. Carroll, Christopher MacNeill, Elizabeth Graham
Abstract: Methods of generating tubular, bioengineered, smooth muscle structures are disclosed as well as bioengineered tissue for tubular organ repair or replacement. The methods can include the steps of obtaining smooth muscle cells; culturing the muscle cells to form a smooth muscle cell construct of directionally oriented smooth muscle cells; disposing the smooth muscle cell construct around a tubular scaffold; and culturing construct and scaffold in a growth media until a smooth muscle cell structure is achieved. The step of obtain smooth muscle cells can further include obtaining autologous smooth muscle cells from a subject. In one preferred embodiment, the muscle cells can first be on a fibrin substrate to form a muscle construct, which is then disposed around a tubular scaffold, for example, a chitosan scaffold. The methods of the present invention can further include connecting two or more tubular structures together to form an elongate composite structure.
Abstract: A biphasic material and devices comprising the same are provided for the development of conductive conduits that may be used for the treatment of peripheral nerve injury. These devices or conduits are designed such that repeated electric field gradients can be initiated to promote neurite and axonal outgrowth. Conducting conduits using doped synthetic and/or natural polymers create specifically patterned high and low conducting segmented materials, which are mechanically used to produce the electrical properties needed for nerve conduits. These electrical properties stimulate neurite outgrowth and axonal repair following a peripheral nerve transection.
Type:
Grant
Filed:
March 15, 2013
Date of Patent:
June 13, 2017
Assignee:
WAKE FOREST UNIVERSITY HEALTH SCIENCES
Inventors:
William D. Wagner, Nicole Levi, Tabitha Rosenbalm, Louis C. Argenta, Michael J. Morykwas
Abstract: The present invention provides a method of sensing pressure in a region of interest by providing a plurality of metallic particles operatively associated with one another in the region of interest (for example, wherein the metallic particles sustain a plasmon upon excitation), and with the metallic particles configured or positioned in relationship to one another so that a physical property of the particles (for example, the energy of the plasmon) varies in response to pressure; measuring the physical property of the metallic particles that varies in response to pressure; and then determining the pressure in the region of interest from the detected physical property (e.g., resistance, energy of the plasmon). Compositions, articles and formulations for carrying out the method in industrial and biomedical applications are also described.
Type:
Grant
Filed:
September 28, 2007
Date of Patent:
June 6, 2017
Assignee:
Wake Forest University Health Sciences
Inventors:
David L. Carroll, Faith M. Coldren, Nicole H. Levi, Lawrence X. Webb, William D. Wagner, Thomas L. Smith, Brian Werner, J. Baxter Mcguirt, Manoj Namboothiry
Abstract: This disclosure relates to methods of using nitrite to detoxify stroma-free hemoglobin based blood substitutes. In particular, methods are described for using a blood substitute comprised of about equimolar amounts of nitrite and hemoglobin (e.g., nitrite-metHb) to treat, prevent, or ameliorate diseases of the blood in a subject, or as a blood replacement in a subject.
Type:
Application
Filed:
May 4, 2016
Publication date:
March 30, 2017
Applicants:
The Government of the U.S.A. as represented by the Secretary of the Department of Health and Human S, The UAB Research Foundation, Wake Forest University
Inventors:
Mark T. Gladwin, Daniel B. Kim-Shapiro, Rakesh P. Patel, Jeffrey Kerby
Abstract: Provided herein are methods and apparatuses for transfecting a cell with a compound of interest by stressing the cell, e.g. with shear stress. The compound of interest may be nucleic acids, proteins, molecules, nanoparticles, drugs, etc., or any combination thereof. Methods of printing cells with an inkjet printing device are also provided, wherein at least a portion of viable cells (preferably at least 1%) are transfected with a compound of interest. Preferably, at least 25% of the cells are viable after printing. In addition, methods of forming an array of viable cells are provided wherein at least a portion of the viable printed cells (preferably at least 1%) are transfected with at least one compound of interest.
Abstract: Provided herein is a tissue stretching device including a tissue clamping member defining an area in a Z plane, wherein the tissue clamping member is configured to hold tissue parallel to the Z plane. Methods of use of the tissue stretching device to stretch a tissue as well as for culturing organized tissues are also provided. Stretched and/or cultured tissues produced by these processes are also provided, as well as methods of treatment making use of the same.
Type:
Grant
Filed:
January 7, 2011
Date of Patent:
March 7, 2017
Assignee:
Wake Forest University Health Sciences
Inventors:
James J. Yoo, Anthony Atala, Paul Scarpinato, Sang Jin Lee, Mitchell Ladd
Abstract: Provided herein are isolated populations of kidney cells harvested from differentiated cells of the kidney, wherein cells have been expanded in vitro, and methods of use thereof. The cells may be provided in a three dimensional matrix for culturing in vitro and/or implanting in vivo. Methods of seeding cells onto the matrix are also provided.
Abstract: An external fixation assembly includes a plurality of hollow pins that are inserted into a patient's bone. Each pin has an interior bore and a plurality of apertures extending through the pin wall from the bore. The pin may be coupled to a source of vacuum pressure operable to create reduced pressure in the tissue surrounding the pin. A cover is placed around the pin and sealed to provide a fluid-tight enclosure that maintains reduced pressure around the pin. A method for applying external fixation using the fixator pins described above includes the steps of inserting each pin through a skin opening, positioning the pin apertures near selected tissue, covering the skin opening with a sealed enclosure, connecting the pins to a source of vacuum pressure, and activating the source of vacuum pressure to create reduced pressure in the patient's tissue at or near the bone.
Type:
Grant
Filed:
May 18, 2015
Date of Patent:
February 14, 2017
Assignee:
Wake Forest University Health Sciences
Inventors:
Lawrence X. Webb, Louis C. Argenta, Michael J. Morykwas
Abstract: The invention provides a method of diagnosing a disease or a predisposition to contract a disease by assaying for mutations of uromodulin (UMOD) within a test subject or patient. The presence of a mutation in the UMOD supports a diagnosis of a disease or a predisposition to contract a disease within the patient.
Type:
Grant
Filed:
May 5, 2014
Date of Patent:
February 14, 2017
Assignees:
University of Pittsburgh—Of the Commonwealth System of Higher Education, Wake Forest University
Inventors:
Thomas C. Hart, Patricia Suzanne Hart, Michael Gorry, Anthony J. Bleyer
Abstract: Provided herein are primers comprising a nucleotide sequence complementary to a portion of a RhD gene. Also provided herein are methods of determining a RhD zygosity in a subject. Also provided are methods of detecting a weak D allele in a subject. Further provided are kits for determining an RhD zygosity.
Abstract: Microcapsules are described that comprise (a) a liquid aqueous or hydrogel core; (b) a semipermeable membrane surrounding said core; (c) live animal cells (e.g., pancreatic cells) in the core; and (d) oxygen-generating particles in said core, said oxygen-generating particles included in said microcapsules in an amount sufficient to lengthen the duration of viability of said animal cells in said microcapsules. Compositions comprising such microcapsules and uses thereof, such as in treating diabetes, are also described.
Type:
Grant
Filed:
June 15, 2016
Date of Patent:
February 7, 2017
Assignee:
Wake Forest University Health Sciences
Inventors:
Emmanuel C. Opara, Benjamin S. Harrison
Abstract: Cell tubes that can be used both for pathology collection and subsequent cell processing include a tube with a cell bed at a lower portion of the tube. The tube can include a base member that can be detachable from the tube body. The tubes can be used to form cell (cytology) blocks that incorporate the cell bed. The cell bed can be an inert cell bed of paraffin.
Abstract: Provided herein are methods of culturing organized skeletal muscle tissue from precursor muscle cells by cyclically stretching and relaxing said muscle cells on a support in vitro for a time sufficient to produce said organized skeletal muscle tissue, including reseeding said organized skeletal muscle tissue by contacting additional precursor muscle cells to said organized skeletal muscle tissue on said solid support, and then repeating said step of cyclically stretching and relaxing said muscle cells in said support in vitro for time sufficient to enhance the density (i.e., increased number of nuclei and/or number of multinucleated cells) of said organized skeletal muscle tissue on said support.
Abstract: Provided herein are isolated populations of kidney cells harvested from differentiated cells of the kidney, wherein cells have been expanded in vitro. The kidney cells may include peritubular interstitial cells of the kidney, and preferably produce erythropoietin (EPO). The kidney cells may also be selected based upon EPO production. Methods of producing an isolated population of EPO producing cells are also provided, and methods of treating a kidney disease resulting in decreased EPO production in a patient in need thereof are provided, including administering the population to the patient, whereby the cells produce EPO in vivo.
Abstract: The present invention provides a method of identifying a subject as having an increased risk of having or developing aggressive prostate cancer, comprising detecting in the subject the presence of various polymorphisms associated with an increased risk of having or developing aggressive prostate cancer.
Type:
Grant
Filed:
January 6, 2012
Date of Patent:
January 3, 2017
Assignees:
Wake Forest University Health Sciences, The Johns Hopkins University
Inventors:
Jianfeng Xu, William B. Isaacs, Henrik Grönberg
Abstract: In one aspect, organic thin film transistors are described herein. In some embodiments, an organic thin film transistor comprises a source terminal, a drain terminal and a gate terminal; a dielectric layer positioned between the gate terminal and the source and drain terminals; and a vibrationally-assisted drop-cast organic film comprising small molecule semiconductor in electrical communication with the source terminal and drain terminal, wherein the transistor has a carrier mobility (?eff) of at least about 1 cm2/V·s.
Type:
Grant
Filed:
September 24, 2013
Date of Patent:
December 27, 2016
Assignee:
Wake Forest University
Inventors:
Oana Diana Jurchescu, Peter James Diemer
Abstract: A pharmaceutical composition for treating low testosterone comprises microcapsules the microcapsules containing live mammalian ovary cells. The ovary cells comprise ovarian theca cells in a treatment-effective amount, but not granulosa cells or without granulosa cells in amounts detrimental to the administration of testosterone. Methods of treating male subjects afflicted with low testosterone by administration of such ovary cell-containing microcapsules are also described.
Abstract: A method of producing organized skeletal muscle tissue from precursor muscle cells in vitro comprises: (a) providing precursor muscle cells on a support in a tissue media; then (b) cyclically stretching and relaxing the support at least twice along a first axis during a first time period; and then (c) optionally but preferably maintaining the support in a substantially static position during a second time period; and then (d) repeating steps (b) and (c) for a number of times sufficient to enhance the functionality of the tissue formed on the support and/or produce organized skeletal muscle tissue on the solid support from the precursor muscle cells.
Type:
Grant
Filed:
April 24, 2009
Date of Patent:
November 29, 2016
Assignee:
Wake Forest University Health Sciences
Inventors:
James Yoo, Joel Stitzel, Anthony Atala, George Christ